《自然哲学的数学原理》是牛顿的科学才华处于时期所写的旷世巨著,是他“个人智慧的结晶”。牛顿不但总结出了力学的基本定律,而且还发现了证明这些定律的数学方法,奠定了数学成为描述宇宙运动的语言的基础。在《自然哲学的数学原理》之后,人类在自然科学中的成就层出不穷,但这些成就无一不与这部非凡的著作息息相关。牛顿提供了科学思维体系的样板。《自然哲学的数学原理》标志着经典力学体系的建立,是人类科学史乃至整个人类文明史中的不朽巨著。《自然哲学的数学原理》不仅影响着自它面世后的300年里的自然科学领域,而且对人类的宇宙观也产生了深刻的影响。
《自然哲学的数学原理》是牛顿的科学才华处于时期所写的旷世巨著,是他“个人智慧的结晶”。牛顿不但总结出了力学的基本定律,而且还发现了证明这些定律的数学方法,奠定了数学成为描述宇宙运动的语言的基础。在《自然哲学的数学原理》之后,人类在自然科学中的成就层出不穷,但这些成就无一不与这部非凡的著作息息相关。牛顿提供了科学思维体系的样板。《自然哲学的数学原理》标志着经典力学体系的建立,是人类科学史乃至整个人类文明史中的不朽巨著。《自然哲学的数学原理》不仅影响着自它面世后的300年里的自然科学领域,而且对人类的宇宙观也产生了深刻的影响。
《费马大定理:一个困惑了世间智者358年的谜》是关于一个困惑了世间智者358年的谜题的传奇。《费马大定理:一个困惑了世间智者358年的谜》既有振奋人心的故事讲述方式,也有引人入胜的科学发现的历史。西蒙·辛格讲述了一个英国人,经过数年秘密辛苦的工作,终于解决了挑战性的数学问题的艰辛旅程。
《科学密匙系列——打开数学之门》阐述了120多个法则、原理、等式、悖论和定理,它们是现代数学的基础。本书以相互的语言阐释深奥的数学,包括斐波纳契数、之诺导论和欧几里得的《几何原本》,还包括一些关键理论,如混沌理论、博弈理论和生命游戏等。 本书简单介绍了古代数学原理,并为有趣的问题提供了同样有意思的答案。如:人类最早在什么时候开始使用数字?什么是最伟大的金字塔?它在哪里?什么是完全数?壁纸图案背后的数学原理是什么?是否有指导如何摆放桔子的理论? 本书按年代顺序编著,不管是浅读,还是仔细阅读以获得数学的深入了解,本书都是之选
《直觉模糊集理论及应用(下册)》内容新颖、逻辑严谨、语言通俗、理例结合、注重基础、面向应用. 《直觉模糊集理论及应用(下册)》是作者 在国家自然科学基金资助下系列研究成果的汇集, 取材于研究团队百多篇学术论文和十多 篇博士、硕士学位论文, 可作为高等院校计算机、自动化、信息、管理、控制、系统工程 等专业的高年级本科生或研究生计算智能课程的教材或教学参考书, 也可供从事智能信息 处理、智能信息融合、智能决策等研究的教师、研究生及科技人员自学或参考.
斯图尔特?夏皮罗的这本独特的著作分为4大部分,全面地阐述了同数学有关的哲学问题和立场。全书探讨了自人类开始理智活动以来所引起的哲学家思考的那些数学问题。在对历史的全面综合中,作者讨论了数学在柏拉图、亚里士多德、康德和密尔这些思想家心目中的地位,并论述了贯串整个20世纪的3种主要立场: 数学即逻辑(逻辑主义),数学的本质是按照规则对字符的操作(形式主义),以及认为数学是一种心灵活动的修正主义哲学(直觉主义)。最后,夏皮罗考察了当代的立场和著作,把读者到这个领域的。 读者只需要很少数学或哲学背景就能愉快地阅读本书。无论是很少涉足学院哲学的数学学生或数学专业人士,还是已经忘掉大部分所学数学的哲学学生和哲学家,都会从本书中受益匪浅。
该书是匈牙利裔英国籍哲学家伊姆雷·拉卡托斯于20世纪60年代完成的一部探索数学史上新发现的产生过程的力作,主要阐述作者用5年时间收集的两个典型的数学案例,以及本书编者添加的拉卡托斯1961年在大学所撰博士论文的部分片段。 拉卡托斯是用对话体的形式进行写作的,他虚构了教师在课堂上与学生们讨论正多面体欧拉公式 V-E F=2 的猜想与发现、证明和反驳的全过程,形象地展现了数学史上对此问题进行研究探索的真实的历史图景,以此来挑战和批判以希尔伯特为代表的认为数学等同于形式公理的抽象、把数学哲学与数学史割裂开来的形式主义数学史观。这篇光辉论著旨在解决数学方法论的基本问题,以一种探索和发现的情境逻辑来代替形式主义和逻辑实证主义的抽象教条。正如拉卡托斯所说,非形式、准经验的数学的发展,并不只靠逐步增加的毋庸置
《模糊数学与rough集理论》主要讲述模糊集与粗糙(rough)集的基本理论和若干应用专题,基本理论包括:模糊集合的基本概念和运算,模糊集合的分解定理、表现定理及扩张原理,模糊数、模糊关系、模糊积分,模糊逻辑与模糊推理;粗糙集的基本概念,属性约简,模糊粗糙集,直觉模糊粗糙集.应用专题包括模糊模式识别、模糊综合评价、模糊聚类分析、模糊控制、模糊数学在管理决策中的应用,以及粗糙集在相关领域中的应用实例. 《模糊数学与rough集理论》注重理论与应用密切结合,淡化抽象的理论推导,精选典型的应用实例,重点阐述模糊数学与粗糙集理论的思想方法及其应用价值.本书适合于各专业大学生、研究生学习和参考,特别适宜于数学类专业(数学与应用数学、信息与计算科学)、计算机科学与技术专业、自动化专业、智能科学与技术专业、经
《康德的数学哲学》一共分为四章。章主要讨论的是康德与数学哲学中的主要人物和流派的关系。在这一章里,作者以问题为线索,阐述了数学哲学中的一些主要思想和疑难,论证了数学命题不可能是重言式的分析命题。第二章主要讨论在现代数学背景下康德的几何观。在这一章里人们将看到,在避免了康德的一个思维跳跃的前提下,现代的各种各样的几何学和康德的时空-几何观之间并不存在本质的矛盾;并且现代的各种各样的几何学都可以在康德的“纯直观”上建立起来。第三章主要讨论了现代数学中的连续性问题。在这一章里,作者力图展示:正因为现代数学的集合论在测度论的视角下并不能十分令人满意地解决连续和测度的问题,数学可以还原为集合论的说法还存在着很多疑难。鉴于此,作者跟随康德,认为数学本质上需要纯直观。第四章主要阐述“建基
《数论、群论、有限域》系统地研究了基础数论、群论和有限域理论。全书分为11章: 集合与函数,整除性理论,数论函数,不定方程,同余式,二次剩余,原根和离散对数,群论,环、域与多项式,有限域,有限域上的线性递归序列。 《数论、群论、有限域》包含了作者多年来的教学经验和研究成果,许多结果是首次公开发表。全书内容丰富,体系完整,论证严谨,行文流畅,深入浅出,特色鲜明。本书可以作为密码学、数学、信息对抗、计算机科学与技术及相关专业研究生和本科生的教材,也可作为其他各专业、各层次的师生和工程技术人员的参考书或自学用书。
this volume addresses recent developments inmathematical modeling in three areas of optical science:diffractive optics, photonic band gap structures, and waveguides.particular emphasis is on the formulation of mathematical modelsand the design and analysis of new putational approaches. thebook contains cutting-edge discourses on areas motivated byemerging technology in optics that provide significant challengesand opportunities for applied mathematicians, researchers, andengineers. each of the three topics is presented through a series of surveypapers to provide a broad overview focusing on the mathematicalmodels. chapters are organized to present model problems, physicalprinciples, mathematical and putational approaches, andengineering applications corresponding to each of the three areas.while some of the subject matter is classical, the topics presentedare new and represent the latest developments in their respectivefields.this volume addresses recent developments inmathematical modeling in three areas of