本书这本经久不衰的畅销书出自一位著名数学家G 波利亚的手笔,虽然它讨论的是数学中发现和发明的方法和规律,但是对在其他任何领域中怎样进行正确思维都有明显的指导作用。本书围绕 探索法 这一主题,采用明晰动人的散文笔法,阐述了求得一个证明或解出一个未知数的数学方法怎样可以有助于解决任何 推理 性问题 从建造一座桥到猜出一个字谜。一代又一代的读者尝到了本书的甜头,他们在本书的指导下,学会了怎样摒弃不相干的东西,直捣问题的心脏。
概率论是数学学科里很基础、很年轻、应用很广泛的一门学科,它不仅和我们日常生活息息相关,更是当今大火的大数据和人工智能技术的基础。不学概率论,就没法看懂前沿科技,没法理解现实世界,更没法预知和抓住未来。 作者通过生活中的案例,从通识的视角,带读者学习正态分布、幂律分布、大数定律、贝叶斯计算、方差和期望,让这些内容不再是高深莫测的数学概念,而是你能运用于自己决策的数学工具。 只要会四则运算,你就能够通过这本书学会概率论的相关概念,培养概率论思维,并将其应用于日常生活中,提升决策能力。
本书是一部综合性的数学大辞典,涵盖数理逻辑、数学基础、数论、代数学、代数几何、分析学、复分析、常微分方程、动力系统、偏微分方程、泛函分析、组合数学、图论、几何学、拓扑学、微分几何学、概率论、数理统计、计算数学、控制论、信息论、密码学、运筹学等学科,以常用、基础和重要的名词术语为基本内容,提供简短扼要的定义或概念解释,并有适度展开。正文后附有数学发展历史纪要、人名译名对照表等附录, 并设有便于检索的外文索引、汉语拼音索引。
本书是一部畅销欧美的数学手册,内容全面而丰富,涵盖分析学、代数学、几何学、数学基础、变分法与优化、概率论与数理统训、讨算数学与科学计算、数学史书中收录有大量的无穷级数、特殊函数、积分、积分变换、数理统计以及物理学基本常数的表格;此外还附有极为丰富的重要数学文献目录。
中译本分为三卷,一卷包括第I-Ⅲ部分,第二卷即第Ⅳ部分,第三卷包括第V~Ⅷ部分。 《数学名著译丛:普林斯顿数学指南(第1卷)》 是由Fields奖得主T。Gowers主编、133位著名数学家共同参与撰写的大型文集,全书由288篇长篇论文和短篇条目构成,目的是对20世纪*后一二十年纯粹数学的发展给出一个概览,以帮助青年数学家学习和研究其*活跃的部分,这些论文和条目都可以独立阅读,原书有八个部分,除第1部分是一个简短的引论、第Ⅷ部分是全书的 终曲 以外,全书分为三大板块,核心是第Ⅳ部分 数学的各个分支 ,共26篇长文,介绍了20世纪*后一二十年纯粹数学研究中*重要的成果和*活跃的领域,第Ⅲ部分 数学概念 和第V部分 定理与问题 都是为它服务的短条目,第二个板块是数学的历史,由第Ⅱ部分 现代数学的起源 (共7篇长文)和第Ⅵ部分 数学家
本卷是这本《集合论导引》的开卷,分为三章,是后续两卷的基础。第1章主要是引进集合论的基本公理、基本概念、基本方法,并给出典型的可数集合的例子,包括自然数集合、整数集合、有理数集合以及彻底有限集合等。第2章主要是引进选择公理以及由此建立起来的基数运算律和一些典型组合实例。第3章专门引进实数集合并对它进行系统分析。本卷将建立一系列基本概念,为全书作铺垫。
《真希望几何可以这样学》是日本著名数学教育家星田直彦所著的数学科普经典,分为 基础篇 和 提高篇 ,以小学高年级和初中阶段的学习内容为主,深入浅出地讲解了几何知识。本书为基础篇,分为平面几何基础、立体几何基础和打开证明之门三个章节。本书较为重视几何语言,在进入具体图形的学习之前,用大量篇幅详细讲解了定义、命题、条件、结论、公理、定理、性质等基本概念,有助于读者区分理解。 本书还将数学中的知识点用有趣的插画小故事表现出来,富有趣味性。不管是对几何略显懵懂的中小学生,还是想要重温几何基础的成年人,抑或是有教学需要的老师和家长,这本书都会是你的*佳选择,相信你能从中体会到数学的乐趣!
本书以手册的形式涵盖了人们日常工作、学习所需用到的数学知识。内容包括算术、函数、几何学、线性代数、代数学、离散数学、微分学、无穷级数、积分学、微分方程、变分法、线性积分方程、泛函分析、向量分析与向量场、函数论、积分变换、概率论与数理统计、动力系统与混沌、优化、数值分析、计算机代数系统等,并专门设有数学常用表格章节,方便读者查阅。
本书坚持“古为今用”、“洋为中用”重视数学发展规律、数学思想和方法,以“尊重史实,突出重点”的原则选取史料,精选古今中外数学产生、发展的重要事件、重要人物和重要成果,将古代、近代和现代各国或地区的数学虫作简明、概括性的宏观介绍与评述。
nbsp nbsp这本由数学家写成的小册子,充分地体现了数学文化、科学精神和学者应有的风骨。作者雷尼立意巧妙,在真实的三段古代背景里,假托苏格拉底、阿基米德和伽利略与其他人的对话,抽丝剥茧地探讨了数学是什么、数学的应用该如何展开,以及数学语言对科学的意义这三大主题。《数学对话录》语言优美、节奏和缓,用可读性很强的对话,慢慢将探讨带向深层,使读者既能体会思维提升的乐趣,又可以享受轻松适意的阅读过程。读雷尼的《数学对话录》,不需要任何专门知识。但是只有肯思考的人,才能循着他的引导,从*远的门外,拾级而登,渐入佳境,*后在科学的殿堂里找到自己能够欣赏的杰作。
本书介绍黎曼几何中的重要技巧和定理,为满足那些希望专门研究黎曼几何的学生,书中还包含大量关于较深论题的背景材料。本书还介绍了最新的研究问题。各种练习散布全书,帮助读者深入理解书中内容。本书是为数不多的整合了黎曼几何的几何和分析两方面内容的专著之一,适合熟悉张量和斯托克斯定理等流形理论的读者,可作为研究生一学年课程的教材。
本书是世界公认的《回归分析》标准教材(aleadingtextbookonregression)。不仅从理论上介绍了当今统计学中用到的传统回归方法,还补充介绍了尖端科学研究中不太常见的回归方法。难能可贵的是,作者有丰富的教学经验和实际应用经验,使得本书理论和应用并重,还给出实际应用中应该注意的问题。新版除利用Minitab,SAS,S-PLUS软件外,还融入了*流行的JMP软件和R软件,来阐释相关技术方法。配套资源很丰富,数据、教学PPT等可免费下载。
数学符号是数学文献中用以表示数学概念、数学关系等的记号。本书研究了常见的200余个符号的来龙去脉着重探讨了常用的100多个符号的产生、发展历史。作者从卷收浩繁的古算史书中进行考证,以史为据,自成体系,可读性强。
本书由131个 无需语言的证明 的图片组成,每一个都非常精彩。当从一个图片中悟出为何该图片证明了相应的数学结论时,读者便能够体会到数学绝妙的美,所以这本书叫做数学写真集。书中的素材选取自国际数学杂志中一流数学家发表的文章。
本丛书希望在中学数学和高等数学之间搭建一座桥梁,以中学数学为起点,逐步展示高等数学的基本思想和方法,便于大学新生快速适应高度抽象的高等数学。反过来,介绍如何把握高等数学的高观点,更好地服务于中学数学的教与学。 本书主要讲述复数在初等数学中的应用,包括解几何题、不等式和三角问题等。本书的最大创新在于不再将复数法视为一种 暴力 计算方法,而是将恒等式思想与复数结合,通过恒等式沟通几何、代数、三角、不等式之间的联系。复数恒等式方法不仅能解题,还能发现新命题,并关联多个看似不相关的命题,为初等数学研究提供新的探索思路。 本书案例翔实,思想新颖,方法简明,可启迪读者的思维,开阔读者的视野,提高读者提出问题、分析问题与解决问题的能力,适合学有余力的高中学生和教师、师范生以及数学教育研究者参
本卷是集合论的模型分析部分。在第一卷的基础上,本卷的主要任务是将逻辑植入集合论之中,并以此为基础实现三大目标:第一大目标是将同质子模型分析引入集合论,这是一种不同于组合分析的对无穷集合展开分析的基本方法;第二大目标则是建立集合论论域的具有典范作用的内模型??哥德尔可构造集论域,从而证明一般连续统假设和选择公理的相对相容性;第三大目标是建立集合论论域的具有典范意义的外模型??科恩的力迫扩张模型,从而证明连续统假设以及选择公理的相对独立性。这三大目标分为三章分别来实现。在一定意义上讲,每一章体现一种基本方法。这些基本方法是从事集合论研究的最基本的方法。
读完本书,你定会为你上学期间没机会读到这样的数学书而感到懊恼不已! 本书作者阿瑟 本杰明是享誉全球的 数学魔术师 ,他独创性地将许多人避之不及的数学与许多人津津乐道的魔术结合在一起,为众多数学恐惧症成人患者、正在学习数学的学生们开启了一个奇妙美丽的数学魔法世界。 本书堪称 12堂极简数学课 ,囊括了我们从小学到中学到大学必须掌握的12个*重要的数学概念,比如算术、代数学、几何学、三角学、微积分、圆周率、无穷大等。更重要的是,本杰明既是一名优秀的数学教授,更是一位高明的魔术师,他的魔术棒所指之处,会让我们茅塞顿开。他在书中为我们准备了神奇精彩的数学魔术、开脑洞的智力问题,让我们在这趟数学的魔法世界之旅中,从大自然中领略斐波那契数列之美,从小幽默中领会到无穷大的奥秘,从《达 芬奇密码》中窥见黄