概率论是数学学科里很基础、很年轻、应用很广泛的一门学科,它不仅和我们日常生活息息相关,更是当今大火的大数据和人工智能技术的基础。不学概率论,就没法看懂前沿科技,没法理解现实世界,更没法预知和抓住未来。 作者通过生活中的案例,从通识的视角,带读者学习正态分布、幂律分布、大数定律、贝叶斯计算、方差和期望,让这些内容不再是高深莫测的数学概念,而是你能运用于自己决策的数学工具。 只要会四则运算,你就能够通过这本书学会概率论的相关概念,培养概率论思维,并将其应用于日常生活中,提升决策能力。
《数学的历程:从泰勒斯到博弈论》是一部数学启蒙和通识教育佳作,深受数学爱好者和数学老师喜爱。从历史的角度,勾勒出一条数学发展的脉络,阐述了重要数学思想概念产生的背景原因和来龙去脉,剖析数学定律的底层逻辑,学习数学家的思维方法。探索了有趣的数学难题以及古代中国的算学、数学悖论、奇妙的 、囚徒困境等话题,生动讲述了数学大师的逸闻趣事,让读者感受深藏的数学之美、思维的乐趣,以及科学家精神。全书实例丰富、解释通俗、表述流畅、寓意深刻。阅读它不需要太高深的数学知识,但无论是数学高手还是初学者都能从中获得乐趣和启发,开阔眼界,增长见识,从而更好地把握数学的特征与规律。
本书包含十年高考数学试卷中的典型数学思想方法研究与十年高考数学试卷中的典型题的具体解题方法研究两章和三个附录,内容包括数形结合思想方法、分类与整合思想方法、化归与转化思想方法等. 本书可供高中学生复习备考时使用,也可作为高中数学教师教学的参考资料.
《挑战思维极限:勾股定理的365种证明》主要介绍了勾股定理的 365 种证明方法, 并按证法的 类型进行归纳、整理和总结, 让读者有一个全面而系统的了解.书中大多数证法用到的知识不 过初中几何的教学范围, 许多证法思路巧妙, 别具一格,对提高读者的几何素养大有裨益. 本书可以作为广大中学师生和数学爱好者的参考读物.
《强基计划数学攻略》是一本针对准备参加强基计划的高中生的数学教材,涵盖了数学基础知识的主要内容。本书的主要内容包括数与方程、不等式、集合与逻辑、函数、三角比与三角函数、数列、微积分初步、平面向量与复数。 本书的特色在于,针对每个主题,书中都有大量的例题和习题,以及详细的解答和解析,可以帮助读者深入理解数学的基本概念和应用,同时提高数学解题能力。此外,本书还提供了一些实用的技巧和方法,帮助读者更好地掌握数学知识。 适合读者对象是需要系统地学习强基计划基础知识的学生和初学者。同时,本书也适合数学教师使用,作为课堂教学和辅导材料。 总之,《强基计划数学攻略》提供了全面而深入的数学知识体系,对于希望掌握数学基础知识和提高数学解题能力的读者来说,是一本非常有价值的参考书。
图论是组合数学中一个重要而且发展迅速的主题,不仅在数学研究中占有重要的地位,在数学奥林匹克竞赛中也是如此。本书介绍了图论的相关知识,全书共分十个章节,分别为:引言、欧拉回路和哈密顿圈、树、色数、平面图、二部图中的匹配、极图理论、拉姆塞理论、有向图、无限图。每一章节中都配有相应的例题及习题,并且给出了详细的解答,以供读者更好地理解相应的内容。本书适合高等院校师生及数学爱好者研读。
?书 ? ? ? 名 ? ?应用数理统计(第三版) ?作 ? ? ? 者 ?刘剑平 等 主编 ?出 ?版 社 ?华东理工大学出版社 ?出版时间 ?2019年06月 ?I ?S ?B N ?978-7-5628-5890-4 ?页 ? ? ? 数 ?263页 ?字 ? ? ?数 ?413千字 ?开 ? ? ? 本 ?16 开 ?重 ? ? ?量 ?0.47千克 ?定 ? &
许多人认为数学离我们很远,除了买菜根本用不着。但他们错了。在英国,280万数学科学从业者一年就为经济贡献了2080亿英镑 也就是说,10%的劳动力贡献了16%的经济产值。 为什么公众对数学的认识与现实之间存在如此巨大的鸿沟?作者在书中探讨了这个问题,并从政治、医疗、气候、出行、娱乐、信息安全、智能生活等多个角度切入,展示了在日常生活的背后,数学如何以令人惊讶的方式发挥着至关重要的作用。
本书是前苏联著名数学家为普及数学知识撰写的一部名著,用及其通俗的语言介绍了现代数学各个分支的内容,历史发展及其在自然科学和工程技术中的应用。本书内容精炼,由浅入深,只要具备高中数学知识就可阅读。全书共20章,分三卷出版。每一章介绍数学的一个分支,第一卷的内容包括数学概观、数学分析、解析几何和代数。
初等数学中的一本新书对现有的期刊、文章和书籍能有什么贡献? 这是我们决定写这本书时关心的问题.这个问题的必然性不利于回答, 因为经过五年的写作和反复修改,我们还有一些内容需要补充.这可能 是一个新问题,一个我们认为相关的评论,或者一个解决方案,直到这 个预测性的时刻,我们应该把它交给这个领域的专家来审查.只要熟读 这本书就应该足以确定其目标读者:准备参加国家或国际数学奥林匹 克竞赛的学生和教练.我们更加需要认识到,这些人并不是这项工作的 潜在受益者.虽然这本书包含了从各种数学竞赛和期刊中甄选的问 题,但人们不能忽视数学的经典结果,因为它们超过了有时间限制的竞 赛水平.经典并不意味着简单!这些数学之美不仅仅可以证明初等数学 可以产生珍宝,它们被许多人视为 真正的数学 ,是对超越竞赛的数学 的一种邀
本书主要讲述了数学归纳法在数学竞赛解题中的应用.全书共分为10章,前8章涉及函数与函数方程、不等式、数列与递归关系、数论和组合数学等方面的问题,所汇集的问题均给出了利用数学归纳法解题的翔实解法. 本书适合参加数学竞赛的学生、奥数教练及数学爱好者参考使用.
卡尔曼滤波技术作为一种很优估计方法,迅速从导航领域推广应用到了目标跟踪、故障诊断、多传感器信息融合以及经济学等诸多领域。本书介绍了卡尔曼滤波的基本原理及其实时应用。本书理论讲解很好透彻,同时结合实时应用分析理论方法,适合作为相关课程的教材或供相关领域的研究人员参考。
本书是前苏联著名数学家为普及数学而撰写的一部名著,用极其通俗的语言介绍了数学各个分支的主要内容,历史发展及其在自然科学和工程技术中的应用。本书内容精练,由浅入深,只要具备高中数学知识、就能阅读。全书共20章,分三卷出版。每一章介绍一个分支,本卷是第二卷,内容包括:微分方程、变分法、复变函数、数论、概率论、函数逼近论、计算方法和计算机科学等内容。
本书为线性代数入门的科普读物,书中以 如何理解线性代数 如何理解矩阵的基础概念与计算方法 为线索,用漫画故事生动呈现了线性代数初学者的学习历程。作者从学习者的角度出发,结合生活例子讲解了线性代数中的基础概念及实际应用意义,解答了初学者在的常见困惑。本书讲解直观、通俗,适合作为正式学习线性代数前的入门读本,也适合作为了解线性代数原理的科普读物。
20世纪最伟大的数学家之一 Andr Weil 在本书中用真诚朴实的语言讲述了他从童年到1947年秋季的经历。他在书中回忆了主要游历:意大利、德国、瑞典以及英国;然后在印度工作两年多,其间他短暂地遇到了甘地;返回巴黎后参与创立了布尔巴基学派;战争年代继续到访了苏联、芬兰,他被芬兰警察当作苏联间谍,险些被执行死刑,辗转于多个监狱,在鲁昂监狱完成了他最伟大的工作:证明有限域上的光滑射影曲线的黎曼猜想;最后以美洲经历为本书画上句号。 通过阅读本书,读者可以洞察一位深刻思想者的内心,这位思想者具有超强的创造性。本书值得对数学、哲学感兴趣的读者收藏。
欧几里得几何以其美丽、优雅和内在的逻辑性吸引了无数人。俄罗斯代数学家Igor R. Shafarevich是20世纪的一位数学领军人物,同时也是一位极优秀的数学普及作家。1943年以后,他一直在苏联科学院斯捷克洛夫数学研究所工作;1958年,他被选为苏联科学院通讯院士。他在本书中以丰富的例证表明,代数在这几方面丝毫不比几何逊色。 本书阐述了代数、数论、集合论和概率论的若干基本内容,却只需要很少的预备知识。本书可作为中学生的拓展阅读材料,也可作为中学数学教师的参考用书。
在他十四岁时,伊恩 斯图尔特开始收集各种他感到有趣但又没有在学校教授的数学,因为他知道,在学校里学的数学并不是数学的全部。他发现,在学校里没有学到的数学其实十分有趣 事实上,其中很多会趣味十足,特别是当不需要担心通过考试或者正确求和时。 本书便是斯图尔特教授五十多年收藏的精选,是有趣的数学游戏、谜题、故事和八卦的大杂烩。大部分内容独立成篇,你可以从几乎任意一处着手阅读。此外,斯图尔特教授还记录下了海盗红胡子船长和考古学家科罗拉多 史密斯的寻宝冒险。作为参考,本书**后给出了那些有已知答案的问题的解答,以及一些供进一步探索的补充说明。 本书适合各种程度的数学爱好者阅读,可帮助培养数学学习兴趣以及破除数学畏惧心理。修订版对2012年版的译文进行了全面整理提升。斯图尔特教授五十多年收藏的更
本书是前苏联著名数学家为普及数学知识撰写的一部名著,用极其通俗的语言介绍了现代数学各个分支的主要内容。历史发展及其在自然科学和工程技术中的应用。本书内容精练深入浅出,只要具备高中的数学知识就能阅读。全书共20章,分三卷出版。每一章介绍一个数学支,本卷是第三卷,内容包括实变函数论、线性代数、抽象空间、拓扑学、泛函分析、群及其他代数系统。
本书共分为3个部分,第1部分为问题,介绍了2015年至2021年AwesomeMath课程的入学测试题;第2部分给出了所有试题的完整或加强的解答;第3部分为术语表,详细地介绍了本书用到的术语。 本书适合准备参加数学竞赛的初高中生及想扩大数学视野的读者参考阅读。
概率方法是一种用随机数学研究图论和其他众多数学分支的方法和理论体系。它已经对数学基础理论和工业生产实际相关问题的建模和解决产生了深刻影响,而随机图的思想也对组合数学、理论计算机科学乃至整个数学的发展产生了重要作用。本书是著名数学家Joel Spencer(2021年Steele奖得主)关于 概率方法 的系列报告 概率方法十讲。作者用百页左右的笔墨构建了整个随机图和概率方法的宏大体系,通过例子详细介绍了随机图的基本模型、期望和方差等基本概念和方法、消去法和去随机化方法,也非常精彩地介绍了Lov sz的局部引理和Spencer自己的得意之作 偏差 。这些内容对于那些想要迅速掌握随机图基本工具的数学工作者、统计学家乃至工程师,或者想迅速进入该领域开展研究的年轻学子都是有益的。 本书可作为数学、计算机、信息安全等专业的高年级本科生和研
本书介绍了平面几何的相关知识及问题.共分5章,主要包括直线、圆、相似、正多边形与圆周、面积的相关内容,同时收录了相应的习题.本书按照知识点分类,希望通过对习题的实践训练,可以强化学生对平面几何基础知识的掌握.激发读者的兴趣。启迪思维。提高解题能力. 本书适合中学师生、数学相关专业学生及几何爱好者参考使用.
这是一本介绍中学数学计算技巧的书,本书共分5章:第1章 数、式与形 ,第2章 变换与技巧 ,第3章 速算与近似计算 ,第4章 一题多解 ,第5章 计算与证明 。 本书适合中学师生及师范院校数学系、数学教育专业师生阅读和使用。