本书是美国著名数学竞赛专家Titu Andreescu教授及其团队编写的数学竞赛 数论知识教材. 书中涵盖了整除、公约数、算术基本定理、数论函数、同余方程、模 p 多项 式、二次剩余、p进赋值等主题.通过精彩的例题重点展现了带余除法、裴蜀定理、 高斯弓I理、同余计算、积性函数、费马小定理、强三角不等式、二次互反律、素数估 计、局部一整体原则的应用.课后共有二百多道习题供练习. 本书适合热爱数学的广大教师和学生使用,特别是从事数学竞赛相关事业的 人员参考使用.
《古今数学思想》是数学史的经典名著,初版以来其影响力一直长盛不衰。著作可谓博大精深,洋洋百万余言,阐述了从古代直到20世纪头几十年中的数学创造和发展,特别着重于主流数学的工作。大量一手资料的旁征博引,非常全面地提及各个历史时期的数学家特别是知名数学家的贡献,是《古今数学思想》的一大特色。《古今数学思想》所关心的还有:对数学本身的看法,不同时期中这种看法的改变,以及数学家对于他们自己成就的理解。本书体现了作者的深厚功力。
本书共有三角形、几何变换,三角形、圆,四边形、圆,多边形、圆,完全四边形,以及值,作图,轨迹,平面闭折线,圆的推广十个专题.对平面几何中的 500 余颗璀璨夺目的珍珠进行了系统地,全方位地介绍,其中也包括了近年来我国广大初等几何研究者的丰硕成果, 本书中的1 500 余条定理可以广阔地拓展读者的视野,极大地丰厚读者的几何知识,可以多途径地引领数学爱好者进行平面几何学的奇异旅游,欣赏平面几何中的精巧、深刻、迷人、有趣的历史名题及成果, 该书适合于广大数学爱好者及初、高中数学竞赛选手,初、高中数学教师和数学奥林匹克教练员使用,也可作为高等师范院校数学专业开设"竞赛数学""中学几何研究"等课程的教学参考书.
这三本书涵盖了小学和初中阶段数学、几何、函数等学科的重点知识和学习方法,旨在帮助读者解决实际教学和学习中遇到的各种困难和痛点。首先,《不焦虑的数学》和《不焦虑的几何》从计算能力提升、难点讲解、思维方式培养等多个方面切入,为家长和孩子提供了一系列可行、实用的辅导方法,使家庭辅助教育更加丰富多彩。其次,《不焦虑的函数》则更深入地剖析了初中和高中阶段函数学习的要点,以及如何从小学平稳过渡到初中,并提供了针对性的学习思路和技巧,帮助学生和家长打好坚实的数学基础和提高成绩。 这三本书的共同特点是用例题详尽地分析知识点和考试技巧,帮助读者快速掌握数学、几何和函数等学科的核心内容,并有效解决学习中的各种困难。在阐述学科知识的同时,作者们不断强调正确的学习思维方式和习惯的重要性,从而帮助读
9787115435590 普林斯顿微积分读本(修订版) 99.00 9787115543776 普林斯顿概率论读本 139.00 9787115543844 普林斯顿数学分析读本 69.00 《普林斯顿微积分读本(修订版)》 本书是作者多年来给普林斯顿大学本科一年级学生开设微积分的每周复习课。本书专注于讲述解题技巧,目的是帮助读者学习一元微积分的主要概念。深入处理一些基本内容,还复习一些主题。本书不仅可以作为参考书,也可以作为教材,定会成为任何一位需要微积分知识人学习一元微积分的非常好的指导书。 《普林斯顿概率论读本》 本书讲解概率论的基础内容, 包括组合分析、概率论公理、条件概率、离散型随机变量、 连续型随机变量、随机变量的联合分布、期望的性质、极限定理和模拟等, 内容丰富, 通俗易懂, 并配有丰富的例子和大量习题, 涉及物理学、生物学、化学、遗传学、博弈论、经济学等多
9787115616401 数学的雨伞下:理解世界的乐趣 89.80 9787115631893 唤醒心中的数学家:帮你爱上数学的生活手账 89.80 《数学的雨伞下:理解世界的乐趣》 在了解这个世界的过程中,现实经常会挑战我们的感官和直觉,让我们震惊不已。这时,数学就像一把雨伞,当撑开这把雨伞时,我们仿佛进入了一个奇特的境界,有了迈向真相、行走在谜团中的勇气;当收起这把雨伞时,我们会发现自己的认知已大不一样,所谓的 理所应当 和 显而易见 将被摒弃,现实背后隐藏的真相将带来巨大的启发。这就是数学的力量。 从代数、几何到相对论,从温度计到黑洞,作者用简洁而生动的笔触阐释了如何更好地思索、观察与理解世界。让我们带上好奇心,撑开数学这把大伞,在宇宙的奥秘中漫步,体会解开疑惑后,如雨过天晴般的愉悦。 《唤醒心中的数学家:帮你爱上数学的生活手账
《高观点下的初等数学》是具有世界影响的数学教育经典,由菲利克斯 克莱因根据自己在哥廷根大学为中学数学教师及学生开设的讲座所撰写,书中充满了他对数学教育的洞见,生动地展示了一流大师的风采。本书出版后被译成多种文字,影响至今不衰, 对我国数学教育工作者和数学研习者很有启发。 《高观点下的初等数学》共分为三卷 *卷 算术、代数、分析 ,第二卷 几何 ,第三卷 精确数学与近似数学 。
数学经常会让我们感到很困惑,数学教科书又枯燥无味,似乎只是众多的概念和定理证明的堆叠,而似乎没有尽头的题海更让我们对数学望而生畏。当遇到一个新的数学名词时,我们往往不知道为什么要引入这个概念,导致对其一知半解。 斯蒂芬 弗莱彻 休森所著的《数学桥》一书独辟蹊径,将数学知识以一种截然不同的方式展示给我们。它不是教科书,也不是普及读物,而是介于这两点之间的 普及性教科书 ;它以高中数学为起点,以一种轻松有趣的方式娓娓道来,向我们展示了大学数学中的核心内容和亮点。我们在欣赏那些令人惊叹的结果的同时,可以领略数学的自然之美和使用价值。 在《数学桥》一书中,每当引入一个新的数学概念,首先作者会介绍它的应用背景,让我们明白这个数学名词并不是数学家凭空捏造的,这样我们在学习一个数学理论时,也了解
上海交通大学钱学森研究中心编*的《智慧的钥匙--钱学森论系统科学》是一本以公务员和大学师生为主要读者对象的钱学森 论系统科学 的原*精选。初版于2005年4月,此次再版,增加了若干篇文章。 从事力学、导弹、航空、航天的研究和实践,这是人们 熟知 的钱学森。但是在1979年,钱学森说他研究力学已是 从前 的事了。钱学森又说: 我们完全可以建立起一个科学体系 去解决我们中国社会主义建设中的问题 。阅读本书,我们走进了钱学森晚年的学术世界,再次感受钱学森开创的 系统科学 在新时代背景下的应用价值和现实意义。
《GeoGebra与数学实验》分两部分,部分详细介绍动态工具GeoGebra的基本操作方法;第二部分是基于GeoGebra平台的数学实验,即运用该平台将数学的内容及相关问题从几何、代数两个方面呈现出来,运用技术手段描述数学问题,理解数学问题,解决数学问题,探究数学问题,揭示数学本质,展示数学智慧,体会数学价值,享受数学之美,了解数学艺术。GeoGebra平台能直观呈现小学、初中、高中乃至大学的所有数学基本内容,是发展学生数学素养的智慧平台。
本书是一部畅销欧美的数学手册,内容全面而丰富,涵盖分析学、代数学、几何学、数学基础、变分法与优化、概率论与数理统训、讨算数学与科学计算、数学史书中收录有大量的无穷级数、特殊函数、积分、积分变换、数理统计以及物理学基本常数的表格;此外还附有极为丰富的重要数学文献目录。
9787115630179 数学与生活4:函数是什么 59.80 9787115544568 数学与生活3 无穷与连续 59.80 9787115542083 数学与生活2 要领与方法 59.80 9787115370624 数学与生活(修订版) 69.80 《数学与生活4:函数是什么》 本书为日本数学家远山启的函数科普作品,书中以 理解函数 为线索,以人物对话的形式,从算术开始逐步讲解函数的本质概念及其发展,为读者完整呈现了函数概念,并引导读者理解 从静止走向运动、从离散走向连续、从运算走向关系 的数学思想。 本书可作为理解函数的科普读物,也可作为函数教学的参考资料。 《数学与生活3 无穷与连续》 不懂音符、乐理的人也能欣赏音乐,甚至可以成为音乐鉴赏家。 不懂数学公式的人,是否也能理解现代数学的体系与思考方法,领略其中令人惊叹的超越性美景呢? 本书是从 欣赏 的角度通俗解读现代数学的科普作品。书中用直观、生动
9787115429384 奇妙数学史 从早期的数字概念到混沌理论 49.00 9787115479945 奇妙数学史 数字与生活 49.00 9787115522733 奇妙数学史 从代数到微积分 59.00 《奇妙数学史 从早期的数字概念到混沌理论》 本书从历史的视角,向我们娓娓道来数学迷人的发展史,从古老的数学起源到现代的重大数学突破,展示了数学这一学科是如何从古巴比伦人、古希腊人和古埃及人的伟大发现,中世纪欧洲学者的发现,文艺复兴时期到现代的科学进步一步一步发展起来的。本书还介绍了那些非常重要的数学概念:从简单的算数、代数、三角、几何到微积分、无限和混沌理论。 现代数学看上去复杂深奥得可怕,但阅读本书并不需要深厚的数学知识。我们在日常生活中常常下意识地运用着数学,我们都是 民间数学家 。带上好奇心,踏上这一段让数学变得触手可及而又好玩有趣的奇幻旅程,你就会明
本书是一部综合性的数学大辞典,涵盖数理逻辑、数学基础、数论、代数学、代数几何、分析学、复分析、常微分方程、动力系统、偏微分方程、泛函分析、组合数学、图论、几何学、拓扑学、微分几何学、概率论、数理统计、计算数学、控制论、信息论、密码学、运筹学等学科,以常用、基础和重要的名词术语为基本内容,提供简短扼要的定义或概念解释,并有适度展开。正文后附有数学发展历史纪要、人名译名对照表等附录, 并设有便于检索的外文索引、汉语拼音索引。
《微积分的奇幻旅程》9787115525062 定价:35.00 苹果有 3 个,蜜橘有 3 个,两边 同样 是 3 个。但 苹果 与 蜜橘 并不相同,如何能视为 同样 呢? 数学是一门十分重要的学问,怎样将如此重要的学问表现得直观、形象呢?教科书和习题集上是满满当当枯燥的文字、难懂的公式,犹如一堆没有灵魂的音符,这实在让人遗憾。本书作者巧妙地将图象和数学概念结合在一起,演奏了一曲华美的乐章。与考试和编程中使用的微积分知识相比,本书的内容相对简单,但不失趣味地揭示了微积分 细细切分、密密汇集 的思想,并十分形象地讲述了*值、极限、斜率、函数等知识。 奇幻旅程开始啦! 《数学定理的奇妙世界》9787115530004 定价:35.00 勾股定理应该是大家非常熟悉的数学定理,但你知道它在*初被发明时的作用吗?勾股定理早在古埃及时代就被用来测量土地的面积。数学
本书根据作者20 多年来在德国和中国开设数学物理方法讲座内容及相关的研究成果提炼而成。其主要内容包括傅里叶级数、傅里叶变换、拉普拉斯变换、数学物理方程的建立、分离变量法、本征函数法、施图姆一刘维尔理论、行波法、积分变换法、格林函数法、贝塞尔函数、勒让德多项式、量子力学薛定诗方程等。本书注重自身理论体系的科学性、严谨性、完整性与实用性,将中国传统教材讲授内容与国外先进教材相结合、教学实践与其他相关课程的需要相结合、抽象的数理概念与直观的物理实例相结合、经典的数理方法与新兴交叉学科的生长点相结合、基础的数理知识与科学前沿中的热点问题相结合。本书既可为教学所用,又可适应科研需要,同时,附有大量不同类型的综合性例题,便于不同层次读者学习掌握分析问题与解决问题的思路和方法。
《古今数学思想》是数学史的经典名著,初版以来其影响力一直长盛不衰。著作可谓博大精深,洋洋百万余言,阐述了从古代直到20世纪头几十年中的数学创造和发展,特别着重于主流数学的工作。大量一手资料的旁征博引,非常全面地提及各个历史时期的数学家特别是知名数学家的贡献,是《古今数学思想》的一大特色。《古今数学思想》所关心的还有:对数学本身的看法,不同时期中这种看法的改变,以及数学家对于他们自己成就的理解。本书体现了作者的深厚功力。
《数学史概论(第6版)》的一个重大补充是Jamie Eves写的文明背景。这是为了满足《数学史概论(第6版)》的那些早期的使用者的要求而写的,他们认为:把不同时代和时期的数学史放到更加深厚的文明背景上去考察,将有助于学生的理解。聪明的学生在着手探讨某些章节的历史资料之前,应该仔细地阅读其文明背景。《数学史概论(第6版)》增添了10张新的图片资料和16张数学家的照片。参考文献也大为扩展了。
本书源于几位作者任教的加州大学伯克利分校、斯坦福大学等高校开设的相关课程。这些课程紧随大数据时代和金融科技的热点,面向金融工程和计算金融项目的学生。当今,量化交易策略及其相关的统计模型和方法、知识表达、数据分析和算法设计以及信息学的重要性越来越高。在此背景下,本书从多学科角度对于量化交易进行了综合阐述,同时也为学术研究和金融实务搭建了桥梁。 量化交易涉及多个学科,且横跨学术界与业界。几位作者结合他们在多个学科的学术背景和丰富的业界工作经验,在撰写本书过程中综合考虑了不同类型读者的核心需要。本书的目标受众既包含高年级本科生、硕士生等在校学生,也包含有志于学习量化交易领域尖端知识和现代交易实务的交易员、量化分析师以及监管者等。考虑到目标受众的背景和兴趣的差异,本书对于章节进行了特
内容简介本书介绍了用 GeoGebra软件创建物理积件的方法,共有62个案例,涉及高中物理中静力学、万有引力、机械波、磁场等内容。每个案例都用图文介绍创建方法,扫描二维码观看视频,使得学习更加自主有效。本书还介绍了GeoGebra 软件处理实验数据、求高次方程根、gif 动图的生成等功能,读者可以通过案例学习 GeoGebra软件,进一步制作自己需要的积件,教师可以直接使用书中积件进行教学。本书可作为高中物理教师信息技术培训教材、高中物理教师制作积件的自学教材、高校物理师范生培训信息技术的教材,也可以作为高中物理教学研究人员的参考资料。
本书主要介绍了高考数学中圆锥曲线的内容,通过系统地梳理十几年来圆锥曲线高考真题和模拟试题,从圆锥曲线的知识点出发,以解题方法为分类标准,直击圆锥曲线的重、难点,归纳出圆锥曲线的热点题型,总结出圆锥曲线的解题方法,整理出圆锥曲线的解题技巧,并以此帮助读者建立趋于完善的圆锥曲线解题框架.读者可以通过阅读本书全面地了解高考数学中圆锥曲线试题的命题趋势,通过命题趋势洞察解题方向,从而能够更好、更快地掌握高考数学中的圆锥曲线知识. 本书适合高二、高三的学生学习使用,希望通过学习本书,同学们能更好地解答高考数学中的圆锥曲线压轴题.
中译本分为三卷,一卷包括第I-Ⅲ部分,第二卷即第Ⅳ部分,第三卷包括第V~Ⅷ部分。 《数学名著译丛:普林斯顿数学指南(第1卷)》 是由Fields奖得主T。Gowers主编、133位著名数学家共同参与撰写的大型文集,全书由288篇长篇论文和短篇条目构成,目的是对20世纪*后一二十年纯粹数学的发展给出一个概览,以帮助青年数学家学习和研究其*活跃的部分,这些论文和条目都可以独立阅读,原书有八个部分,除第1部分是一个简短的引论、第Ⅷ部分是全书的 终曲 以外,全书分为三大板块,核心是第Ⅳ部分 数学的各个分支 ,共26篇长文,介绍了20世纪*后一二十年纯粹数学研究中*重要的成果和*活跃的领域,第Ⅲ部分 数学概念 和第V部分 定理与问题 都是为它服务的短条目,第二个板块是数学的历史,由第Ⅱ部分 现代数学的起源 (共7篇长文)和第Ⅵ部分 数学家