《混沌数学基础》主要从数学角度讲述混沌的概念、性质、基本理论与解析判定方法。《混沌数学基础》引入了Li—Yorke混沌与Devaney混沌概念并讨论其条件化简问题,证明了三角帐篷映射、蒙古包映射、符号空间上移位映射以及平面Smale马蹄映射等映射或系统的混沌性,给出了“周期三意味着混沌”的详细证明,证明了Devaney混沌与Li—Yorke混沌等在拓扑共轭下的不变性,讲述了拓扑熵及其与Li—Yorke混沌的关系等并展示了用Melinkov定理判别系统混沌性的方法。
《高等数学疑难问题选讲》是“高等学校大学数学教学研究与发展中心”立项资助的教学研究项目成果。《高等数学疑难问题选讲》编写的主要目的是为了帮助从事“高等数学”教学的青年教师更深刻地领会教学内容,提高教学水平和教学能力。全书分章按问题编排,各问题之间相对独立,便于读者查阅。
该教材内容主要涵盖材料的基础知识介绍、原子的结构与键合、金属和陶瓷的结构、高分子结构、固体缺陷、扩散、力学性能、变形和强化机制、失效、相图、相变、电性能、材料类型及其应用、材料的合成制备与加工、复合材料、材料的腐蚀与降解、热性能、磁性能、光学性能、材料科学与工程所涉及的经济,环境和社会问题 。 本书内容全面、先进。不仅是材料学科的必修课教材,也是应用物理、化学工业、信息工程、生物工程、电子电工、车辆工程、航空航天等专业的必要补充教材。也可为专业人员提供参考价值。
逻辑学是研究思维形式的结构及其规律以及认识事物的简单逻辑方法的科学。逻辑学作为思维科学,与人的智能的培养与提高联系极其密切。逻辑学具有全人类性、基础性、工具性与规范性,被称为人类成员都得学习与掌握的“思维的语法”。学习逻辑学,有助于培养和提高认知自学能力,有助于培养与提高理论素养,有助于培养和提高科学研究能力,有助于培养和提高思维素质。逻辑学在智力开发、思维素质的培养与提高方面,具有其他学科与课程不可替代的重要作用。当今世界,逻辑学已渗透到许多学科领域,诸如哲学、心理学、计算机科学、语言学、物理学、法学、伦理学等。许多国家,尤其是欧美发达国家对逻辑的研究和普及倾注了巨大的人力、财力、物力。20世纪80年代,联合国教科文组织正式将逻辑学列为数、理、化、天、地、生同等重要的基础学科。
橄榄又称白榄、青果、黄榄,原产中国南部地区,是我国南方的热带南亚特产水果和药用植物。橄榄在我国已有2000多年的栽培历史,以福建、广东种植最多,广西、中国次之,海南、四川、重庆、云南、贵州、浙江等地也有一定栽培面积。 ?? ?? ??橄榄味酸涩,香甜之味久嚼方得,所以民俗取其苦尽甘来的寓意,把它当作吉祥如意的象征;橄榄气味特别清香,能增进食欲,舒畅神志,为茶余酒后佳品。除鲜食外,还可以开发出多种蜜饯、果汁等食品。橄榄属于卫生部批准的既是食品又是药物的69种物品之一,药用价值很高。近年的研究成果表明:橄榄富含钙和有机铬,在水果中名列前茅;橄榄性味甘酸涩平,有解毒生津,清肺利咽之功效,还有减肥降脂的作用,其根、果、仁、核、叶、花粉等均可入药。因此,橄榄综合开发利用价值很高。 ??本书主要介绍了
数理逻辑是计算机科学的基础之一,在模型与系统的规约与验证等方面有着广泛的应用。随着当今软硬件产品日趋复杂,数理逻辑已经成为越来越多设计开发人员的日常工具。 本书适合作为高等院校计算机及相关专业的数理逻辑/形式化方法课程,涵盖了命题逻辑,谓词逻辑、模态逻辑与 Agent、二元决策图、模型检查和程序验证等内容。与传统数理逻辑教科书相比,它的主要特色就是紧紧围绕软硬件规约和验证这一主题,反映了计算机科学中数理逻辑的新发展和实际需要。第2版新增了可满足性算法,紧致性理论和Lowenhenm-Skolem定理,并介绍了Alloy语言和Nusmv工具。 本书自出版以来受到广泛好评,已经被包括美国普林斯顿、卡内基-梅隆、英国、德国汉堡、加拿大多伦多、荷兰 Vrije,印度理工学院在
该书介绍了一些的数论问题,适合不同层次的读者阅读。一方面,作者不需要更宽泛的数学知识;事实上,只要在数学方面接受过正规的学校教育就足够了。另一方面,作者探讨了一些真正的数学兴趣问题,并以更易读懂的方式讲解,因此,数学知识丰富的作者在阅读此书时会感到非常愉悦和有益。该书中几个值得注意的点:数学归纳法的详细讲述和通过该法证明的独特的因子分解定理。
本书是作者在为研究生开设代数拓扑学课程的讲义基础上整理而成的,全书共九章,第零章为预备知识,前三章介绍单纯同调论,第四章为当前流行的范畴论,从第五章开始介绍在一般空间上的连续同调论。后四章是CW空间、一般系数的同调论、乘积空间的同调论和Steenrod运算。本书论述严谨,深入浅出,作者力图从较直观的几何概念出发引出极为抽象的概念。
逻辑学是研究思维形式的结构及其规律以及认识事物的简单逻辑方法的科学。逻辑学作为思维科学,与人的智能的培养与提高联系极其密切。逻辑学具有全人类性、基础性、工具性与规范性,被称为人类成员都得学习与掌握的“思维的语法”。学习逻辑学,有助于培养和提高认知自学能力,有助于培养与提高理论素养,有助于培养和提高科学研究能力,有助于培养和提高思维素质。逻辑学在智力开发、思维素质的培养与提高方面,具有其他学科与课程不可替代的重要作用。当今世界,逻辑学已渗透到许多学科领域,诸如哲学、心理学、计算机科学、语言学、物理学、法学、伦理学等。许多国家,尤其是欧美发达国家对逻辑的研究和普及倾注了巨大的人力、财力、物力。20世纪80年代,联合国教科文组织正式将逻辑学列为数、理、化、天、地、生同等重要的基础学科。
《现代催化原理》在平衡态热力学的基础上,总结了催化作用中的一些普适性规律和动力学研究进展的特点,并以众所周知的L-H和R-E催化作用机理为例,演绎并给出了各自的表面动态学理论表达式。根据反应物种(原料、产物、催化剂)在催化过程中分子内部各种模式能量的变化,揭示了吸附和催化基元步骤以及反应物种和催化剂之间能量交换过程的特点;介绍了表面激发物种的弛豫、减活和寿命等现代概念和实验数据。根据非平衡态热力学原理,确认催化过程中某些步骤热力学上的非平衡性,是产生诸如催化剂再构、速率振荡和共辄以及化学能的增强等一系列耗散结构的原因。以此为契机,探讨了在非平衡态热力学基础上建立新催化理论的可能途径。
编写此书,是希望为我国的大学生和数学爱好者提供一本提高数学素质(特别是分析问题和解题能力)的有益读物,同时也为高校数学教育提供一本很有特色的教学参考书。 本书共有三篇:篇,汇集了北京市大学生数学竞赛届至第二十一届的全部试题,并给出了解题思路及较详细的参考解答;第二篇,选编了我国部分省市和高校的大学生竞赛的试题,对其中大部分给出了较详细的参考解答、答案或提示,有的给出了解题思路;第三篇,编入了、第二届全国大学生数学竞赛及国外一些大学生数学竞赛的试题,并给出了解题思路及较详细的参考解答。
序玩转智力的魔方