本书共有三角形、几何变换,三角形、圆,四边形、圆,多边形、圆,完全四边形,以及最值,作图,轨迹,平面闭折线,圆的推广十个专题。对平面几何中的500余颗璀璨夺目的珍珠进行了系统地、全方位地介绍,其中也包括了近年来我国广大初等几何研究者的丰硕成果。 本书中的1500余条定理可以广阔地拓展读者的视野,极大地丰厚读者的几何知识,可以多途径地引领数学爱好者进行平面几何学的奇异旅游,欣赏平面几何中的精巧、深刻、迷人、有趣的历史名题及近期新成果。 该书适合于广大数学爱好者及初、高中数学竞赛选手,初、高中数学教师和数学奥林匹克教练员使用,也可作为高等师范院校数学专业开设“竞赛数学”“中学几何研究”等课程的教学参考书。
本书筛选了近年来的各地高考圆锥曲线试题,内容上注重题型归类和方法总结,以便师生直接利用和进一步研究解题方法,凸显了“知识问题化”“题目典型化”“方法通俗化”的特点,并且把一些基本的、有价值的题目进行了推广,寻求通性、通法。
《普通高等教育“十二五”规划教材:大学文科数学(第3版)》根据当前普通高等院校文科数学课程教学指导意见和教材改革精神,在第2版的基础上,由从事文科数学教学的一线教师执笔编写,深入浅出地讲解了大学文科数学的基本知识,包括:函数、极限与连续,一元函数微分学,一元函数积分学,二元函数微积分学,常微分方程简介,线性代数初步及初等概率论基础,共七章内容.每章还配备适量的例题和习题。 《普通高等教育“十二五”规划教材:大学文科数学(第3版)》注重数学思想的介绍和基本的逻辑思维训练,从不同的侧面比较自然地引人数学的基本概念,适量给出一些相关的证明过程及求解过程,由于大学文科数学的学时限制,在教材内容的选取与组织上对高等数学、线性代数及概率论课程的知识进行了必要的精简。本书结构严谨、逻辑
本书作为国家精品教材同济大学数学系《高等数学》的配套用书,书中精选了大量源自各高校的各种考试试题,具有集中要点,与教学同步;多级筛选,突出重点等特点。本书可作为本科院校学生学习高等数学课程的参考用书。
本书主要介绍高等数学中300道经典习题的一题多解,这是作者在30多年教学过程中的积累和总结。书中的习题及其解法部分选自高等数学及数学分析类参考文献、国内外大学数学竞赛试题和研究生入学考试试题及其解答,部分源于作者多年的教学研究成果,其中有不少是作者编制的新题和给出的新颖解法,解法丰富多彩。每道习题均包括典型例题、特别提示及类题训练三个环节,供读者拓展解题思路、思考和练习之用,以加深对相关解题方法的理解和运用。全书例题与同类训练题总和达1500多道。习题的典型性与广泛性、解法的多样性与新颖性、解法的普适性与拓展性、类题的针对性及习题的海量性是本书的主要特色。
全书遵循高等教育规律,突出高等职业教育的特点,注重对学生数学素养和应用能力的培养,体现数学建模思想。全书分为上、下两册共10章,内容包括:函数、极限与连续、导数的应用、一元函数的积分学、微分方程、向量代数与空间解析几何、多元函数微积分和无穷级数等。教材每章后附有历史的回顾与评述,主要介绍数学发展史与相关数学大师。本书对于所涉及的若干定理、推论、命题等,既不追求详细的证明过程,又不失数学理论的严谨;注重将数学建模思想融入到教学中;结合数学软件,培养学生处理数据以及求解数学模型的能力。与本书配套的辅助教材有《高等数学练习册》、《高等数学学习指导》。
本书主要讲述工程及物理中常用的数学方法,全书共分6章:第l章主要围绕广义函数介绍线性泛函分析的最基础的内容;第2章介绍积分变换中最重要的两种变换:Fourier变换与Laplace变换;第3章介绍二阶常微分方程的幂级数解,对常点和正则奇点附近的幂级数解的结构进行了详细的讨论,并介绍了涉及的几种重要的特殊多项式;第4章介绍稳态问题的解析方法;第5章介绍演化方程的解析方法,它们是热传导方程与波动方程的初值及初边值问题的解法;第6章介绍曲线坐标系中的分离变量法,这里只考虑球坐标系与柱坐标系中的分离变量法。全书突出广义函数在数学物理问题求解中的作用,并从微分流形的概念出发,对曲线坐标系中的微分算子给出了严格的推导,自成一休。
《线性代数附册 学习辅导与习题全解 同济·第七版》是与同济大学数学科学学院编《工程数学线性代数》第七版教材配套的学习辅导书,由同济大学作者团队根据教材内容和教学要求编写而成。该书在《工程数学线性代数》第六版附册(即辅导书)的基础上修改而成。全书与教材一致分为六章,每章内容包括基本要求、内容提要、学习要点、释疑解难、例题剖析与增补、习题解答、补充习题(附答案和提示)、自测资源等多个栏目。其中“释疑解难”根据编者对课程内容的深刻理解和长期积累的丰富经验进行编写;“例题剖析与增补”充分挖掘例题的内涵,有助于读者举一反三,掌握学习方法;“习题解答”注重阐明解题的思想和方法,对全书习题给出规范解答。 《线性代数附册 学习辅导与习题全解 同济·第七版》具有相对的完整性和独立性,主要面向使用同济
杨海涛主编的《高等数学》是在贯彻落实*“高等教育面向21世纪教学内容和课程体系改革计划”要求精神的基础上,按照国家非数学类专业数学基础课程教学指导委员会*提出的“工科类本科数学基础课程教学基本要求”,并结合当前大多数本科院校学生基础和教学特点进行编写的。全书分上下两册。上册分4章,内容包括函数、极限与连续,一元函数微分学,一元函数积分学,向量代数与空间解析几何;附录包括二阶和三阶行列式简介,常用曲线方程与图像,积分表,数学建模,数学实验。下册分4章,内容包括多元函数微分学、积分学,无穷级数和微分方程,附录包括数学建模与数学实验。每册书后附有习题答案与提示。 《高等数学》知识系统、体系结构清晰、详略得当、例题丰富、语言通俗、讲解透彻、难度适中。适合作为普通高等院校工科类、理科
高等数学是高职高专院校各专业的一门基础课程,对于培养学生的逻辑思维能力、分析问题和解决问题的能力,以及提高综合素质,都有很大帮助。为了适应高职高专教育的需要,与时俱进,我们以*制定的《高职高专教育高等数学课程教学基本要求》为依据,全面贯彻“以应用为目的,以必须够用为度”的原则,并结合高职高专院校在培养技术应用型人才方面的教学特点,编写了《高等数学》。 《高等数学》精选大量具有实际背景的例题和习题,旨在启发学生的思维,培养学生的创新意识,以及运用数学工具解决实际问题的能力。全书共安排十一章,包括集合、映射与函数,极限与连续,导数与微分,微分中值定理及导数的应用,不定积分,定积分与广义积分,多元函数微分学,多元函数积分学,无穷级数,微分方程初步,Mathematica简介。全书内容叙述
本书是与天津大学出版社版、由相同作者主编的《高等数学》(下册)配套的辅导教材。内容包括多元函数微分学,重积分、曲线积分及曲面积分、无穷级数和微分方程等5章的全部习题的解答过程及答案。每章后配有复习题及自我测试题。复习题随题给出了解答过程及答案,自我测试题的解答进程及答案在书后统一给出。书末还附有积分表。 本书适合全日制普通高等学校及远程高等教育、高等职业教育,成人高等教育的本科学生使用,也适合自学。
《高等数学》按照**制定的“工科类本科数学基础课程教学基本要求”编写。《高等数学》分上、下两册,共12章。此为下册,内容包括向量代数与空间解析几何,多元函数微分法及其应用,重积分,曲线积分与曲面积分,常数项级数与幂级数,傅里叶级数等6章。书中每节后配有适量的习题,每章之末均配有复习题。为方便读者查阅参考,在所附习题或复习题之后,都附有答案或提示。 《高等数学》条理清晰,论述确切;由浅人深,循序渐进;重点突出,难点分散;例题较多,典型性强;深广度恰当,便于教和学,本书可作为普通高等院校(特别是“二本”及“三本”院校)或成人高校工科类本科或专升本专业的“高等数学”课程的教材,也可供工程技术人员或参加国家自学考试及学历文凭考试的读者作为自学用书或参考书。
本书为《高等数学(同济 七版)》(下册)的配套辅导书,本书共分为5章,每章包含知识结构图、考研大纲要求、考研试卷分值统计、本章内容概述、题型与方法、考研真题解析、教材课后习题详解、目标自测题与答案共七个部分。本书主要特点:例题种类详细,知识点的结构层次清楚,内容充实,方法性强以及与考研联系紧密。本书是针对使用该教材的教师与学生的同步辅导书,也适合作为考研数学复习的参考书。
《高等数学疑难分析与解题方法(上)》是学习高等数学课程的一本很好的辅导书。《高等数学疑难分析与解题方法(上)》与同济大学《高等数学》第六版同步,上册内容包括函数与极限、导数与微分、微分中值定理与导数的应用、不定积分、定积分、定积分的应用与微分方程。 《高等数学疑难分析与解题方法(上)》的特点是着重数学思想、方法的理解与应用,在疑难分析中,对概念理解与方法运用中可能产生的问题都作了详细的阐述与诠释。在解题方法中,不仅对“同济六版”中的全部习题作了详尽的解答,还补充了相当数量的例题,对高等数学的解题方法作了精彩的演绎、归纳、评点,相信读者通过学习《高等数学疑难分析与解题方法(上)》,将完全掌握高等数学的思想与方法。 《高等数学疑难分析与解题方法(上)》还附有历年研究生入学
随着数学的不断发展,不定方程的重要性日益显著。现代数学的重要分支,如代数数论,代数几何,表示理论……都在这里交汇。不定方程几乎成为一块试金石,用以检验新的数学理论和新的数学方法。 本书是为丰富中学生的数学知识而写的小册子。 为便于学生学习,尽量使用初等方法来讨论在初等数学(特别是各级数学竞赛)中经常遇到的不定方程。学生阅读不定方程所需的一些整数知识,在本书的附录中也作了阐述,可供参考。
本书作为高职教育的知识载体,在深化教育教学改革、全面推进素质教育、培养创新人才中有着举足轻重的地位。高等数学是高职院校各专业重要的基础课程之一,随着高职教育的蓬勃发展和教学改革的不断深入,为了适应高等职业教育培养高技能人才的需要,更好地贯彻*等七部门《关于进一步加强职业教育工作的若干意见》的有关精神,在认真总结兄弟高职院校高等 数学课程的教学改革经验以及我院教师的教学经验的基础上,我们组织编写了教材《高等数学》,本书力求充分考虑高职教育的特点与要求,使其既满足高职各类专业需要,又适合高职学生的不同知识需求。 在本书的编写过程中我们遵循以下原则: 1.注重以实例引入概念,并终回到数学应用的思想,加强学生对数学的应用意识和兴趣,培养学生用数学思想消化吸收专业知识的能力。注意与实际
本书是《高等数学(同济六版)》的配套辅导书,与教材的章节分法一致,共分12章,其中上册1~7章,下册8~12章,每章又分若干节。每节包含知识结构图及知识点梳理、典型例题、教材习题解答三大部分,然后,在每章后一节后面,还有本章知识结构及内容小结、教材总习题解答、同步自测题及参考答案。 详细解析教材上的每一道习题,提供思路和方法 对例题分题型按难度梯度设置,全面又层次分明 每章给出同步自测题及答案,自己测试学习效果 本书针对教材上的习题,每一道题目都给出详细解析,有一些题目甚至给出了多种解法,根据需要,有的还在题目解答的前面设置了【思路探索】帮助读者找到解题的思路,有的在解答的后面设置了【方法点击】,对这一类问题的解法进行总结。 本书的例题,首先分题型进行布置,同一题型的
本书对高等学校教材《高等数学》(第四版)全部习题做了详解,是大学工科娄学教材的一本辅助性参考书,旨在帮助学生更好地掌握数学的基本概念、基本定理,又在保证教学要求的前提下每章都配置了自测提高题,以扩大习题量,提高教学质量。 本书分上、下两册.下册习题内容包括:多元函数微分法及其应用、重积分、曲线积分与曲面积分、无穷级数、微分方程等内容。 该书具有习题量大,题型广泛,推理清楚,解题详细等优点,可供高等工科院校不同专业的学生使用,也可作为考研的参考读物。
韩慧蓉、岳忠玉编写的《高等数学同步作业与训练》是与同济大学数学系编写的《高等数学》(第六版)(上、下册)相配套的同步习题教学辅导书,全书结合教材按章同步编写,共分12章。针对普通应用型本科院校本科生的特点,精选每一章节的习题,既能保证对知识点的全面覆盖,又考虑了各种题型的广泛性与代表性。每章按照每小节一套习题、每章结束有一套自测题的形式进行编写,同时,书的*后附有期中考试和期末考试模拟试题以及2000一2014年考研真题分类汇总,通过对这些题目的分析解答,读者能更好地掌握知识点和提高综合解题能力。 本书可作为普通应用型本科院校、大学独立院校本科生学习高等数学的同步习题教学辅导书,也可供从事高等数学教学的教师布置作业和考试命题使用,还可供报考硕士研究生或自学高等数学的广大读者参考。
本版《高等数学》上、下册系高等院校“新高职”或“一般本科”高等数学课程使用的教材,本教材基本保留了“高等数学”课程内容的传统风格,编写时参照了《高等数学课程教学基本要求》.本书上册包括函数、极限与连续、导数与微分、微分中值定理及导数的应用、不定积分、定积分及向量代数与空间解析几何等7章;下册包括多元函数微分学、重积分、级数、微分方程及附录中的曲线积分与曲面积分等5章。全书基本上覆盖了现行理工科类院校《高等数学》课程(本科生)的全部教学内容. 本书既适用于全日制普通高等理丁科院校及经济、管理类院校的本科生作为高等数学课程的教材,又可以作为网络高等教育、函授、高等职业技术教育或成人继续教育的大专生作高等数学课程的教科书。