本书介绍了线性代数的基本理论,主要包括用消元法解高阶方程组(包括适定、超定和欠定),用向量空间理解线性代数,以及线性变换的实际应用三个方面。通过近50个应用实例,介绍了它们的建模方法和解题程序。 本书的特色:(1) 实用化:本书以工科的后续课程及实际工程问题的解题需要选择内容,包含十几个应用例题;(2) 大众化:简化理论,使具有高中毕业程度的读者用较少的学习时间(约30学时)就能基本掌握;(3) 现代化:用计算机软件(MATLAB)来解决问题,不依靠笔算。 本书的读者对象为在职工程师(继续教育读物)、应用型技能型专业的学生(以本书为线性代数教材)以及普通高校本科学生(以本书为参考书)。
《高等数学引论》是我国著名数学家华罗庚在上世纪60年代编写的教材,曾在中国科学技术大学讲授,全书共分四册,包含了微积分、高等代数、常微分方程、复变函数论等内容,全书反映了作者的“数学是一门有紧密内在联系的学问,应将大学数学系的基础课放在一起来讲”的教学思想,还包括了作者的“要埋有伏笔”、“生书熟讲,熟书生温”等教学技巧,书中还介绍了数学理论的不少应用。这使得本套书不同于许多现行的教科书,是一套有特色、高水平的高等数学教材。 册包括实数极限理论、微分和积分及其应用、级数理论、方程的近似解等内容:第二册包括多元函数的微积分、多重级数理论、曲线及曲面、场论、Fourier级数、常微分方程组等内容;第三册主要介绍复变函数论的一般理论;第四册主要介绍代数矩阵论的基本理论及其应用。 本书再版时得
《高等数学同步辅导》与同济大学应用数学系编写的《高等数学》(本科少学时类型)教材相配套,分上、下两册,共十一章,包括函数与极限、导数与微分、中值定理与导数应用、不定积分、定积分及其应用、微分方程、向量代数与空间解析几何、多元函数微分法及其应用、重积分、曲线积分、无穷级数等内容。每一章由内容摘要、典型例题与同步练习、练习题(题后附有参考答案)三部分组成。本书主要阐述了《高等数学》的基本理论和基本方法,剖析了《高等数学》的重点和难点。本书由周晖杰等主编。
本书以工科类专业教材为素材,收集编写了若干建立在高等数学、线性代数、概率论和数理统计的理论与方法上的数学模型,力求为数学在工科类专业中的应用提供链接.本书在编写上力求对问题的背景的说明简单明了,对模型的数学描述与数学表达深入浅出,同时尽量使各模型相对独立以供读者选读.本书涉及信息计算中的几个概念,图形图像数学模型的矩阵表示方法,离散时间系统的状态空间、能控性与能观性的数学基础,线性系统中离散卷积的矩阵表示,声呐信号中主要的信号描述函数,机械设计中优化设计的数学模型,力学中扭转、弯曲应力的数学度量,不可压非黏性流体流动的基本方程,泛函的欧拉方程,加权余量法,几个集总电路基础元件约束关系的数学表示,温度场中梯度和方向导数计算问题,导热基本定律的三个方程,线性回归模型及其矩阵表示,
《普通高等教育“十二五”规划教材:大学文科数学(第3版)》根据当前普通高等院校文科数学课程教学指导意见和教材改革精神,在第2版的基础上,由从事文科数学教学的一线教师执笔编写,深入浅出地讲解了大学文科数学的基本知识,包括:函数、极限与连续,一元函数微分学,一元函数积分学,二元函数微积分学,常微分方程简介,线性代数初步及初等概率论基础,共七章内容.每章还配备适量的例题和习题。 《普通高等教育“十二五”规划教材:大学文科数学(第3版)》注重数学思想的介绍和基本的逻辑思维训练,从不同的侧面比较自然地引人数学的基本概念,适量给出一些相关的证明过程及求解过程,由于大学文科数学的学时限制,在教材内容的选取与组织上对高等数学、线性代数及概率论课程的知识进行了必要的精简。本书结构严谨、逻辑
本手册包含三部分内容:高等数学(微积分)、线性代数、概率论与数理统计.归纳总结了三部分内容中的定义、定理、公式、法则和方法.为便于读者学习和使用,在内容的编排顺序上与同济大学版高等数学保持一致;在目录上列出了手册中的重点条目;在每一章的后,提供了本章知识点之间的关联网络.本手册对正在学习高等数学、线性代数、概率论与数理统计和复习准备考研究生的读者都有极大参考价值;此外,对于曾经学过大学数学课程,并希望在短时间内迅速复习和回忆大学数学内容的读者也具有重要的参考价值.
“算两次”,是一种重要的数学方法,也称做富比尼原理。用两种方法计算同一个量,是一种行之有效的基本方法。 这本小册子,通过形形色色的例题来介绍“算两次”,读者一定能够举一反三,找到 多的应用。
本作业集为适应应用型本科人才的培养要求而编写,分为A、B两册. 本册为A册,内容涉及多元函数微分法及其应用(多元函数的基本概念,偏导数,全微分及其应用,微分法在几何上的应用,多元函数的极值及其求法)、重积分(三重积分的概念及其计算法,利用柱面坐标计算三重积分)、曲线积分与曲面积分(格林公式及其应用,对面积的曲面积分,对坐标的曲面积分)、无穷级数(常数项级数的概念和性质,常数项级数的审敛法,函数展开成幂级数)和微分方程(微分方程的基本概念,可分离变量的微分方程)。 此外,附录中还给出了习题的参考答案。
本书以大学复变函数的学习内容为依据,以*研究生考试大纲为依据安排章节。每章按题型分类,每个题型中包含题型特点及解题指导。为方便不同学习阶段的读者使用本书,编写过程中每章内容分为两部分:*部分为基本题型,作为在校生学习以上课程时的同步学习指导使用,其特点为所选均为基本题目;第二部分为综合提高题型,一方面可供读者在本课程结束时复习、总结使用,另一方面为备考硕士研究生入学考试的读者提供复习的工具。为加深读者学习的印象、提高学习效果,题中除包括解题过程外,还有思路探索、方法点击,进一步对题目进行分析、总结。
《高等数学复习纲要》为在校大学生复习应试及研究生报考提供了一份理清知识脉络的提纲,为复习提供线索,为应试传输信息,《高等数学复习纲要》分为:微积分(高等数学),线性代数,概率论与数理统计三个部分。 《高等数学复习纲要》可作为各类高等院校学生的学习参考书和教师的教学参考书以及科技人员的工作参考书,也可作为各类专业学生的考研复习资料。
本书主要通过文字+图的形式向教师阐述如何在课程内容、课程讲解中巧妙、科学、有效地融入思政元素,从而实现润物细无声的课程思政。作者在遵循教育规律的前提下,在线性方程组、矩阵理论、行列式、线性空间、线性变换、特征值等内容的引入、知识点、定义、例题、证明、计算、应用中充分挖掘思政元素。思政元素主要包括文化自信、爱国主义情怀、理想抱负、正确价值观、正确科学观、正确审美观、视野的广度和深度、数学思维、创新精神、奋斗精神等。书中每一个课程思政教学案例都赋予清晰的图解和详细的文字解释,让教师能真正感受教学内容中的思政元素,并能在课堂上灵活使用。