本书对高等数学的大部分内容作了简明的、介绍性的论述,全书共分十二章,其中八章分别讨论数论、代数、几何及线性代数、极限、连续性及拓扑学、微分、积分、级数和概率、每章都从基本概念、基本定理开始,一直论述到当前的进展,并附有该学科的历史概况及有关的著名数学家的生平简介,重要参考书。另外还有三章分别讨论数学模型与现实,数学的应用及17世纪的数学史,最后一章讨论数学的社会学、数学的心理学及数学教学。《BR》 本书内容丰富,论述严谨,可使读者了解数学的全貌、现代数学的特点及数学的应用并可提高读者对数学的兴趣。《BR》 本书由胡作玄同志翻译,张燮同志初校,沈永欢同志复校。
每年都会有来自全球各地学习数学的学生和教师聚集在 奇妙的数学 暑期课程,有意练一直是课程的主要内容.本书共分为三部分,第一部分为题目,介绍了2006年至2014年 奇解题训学 暑期课程的人学测试试题;第二部分给出了所有试题的完整或者加强的解答,许多问题都给出的数种解答:第三部分为术语表,详细地介绍了本书以到的的方式将这有些问题及复杂的数学思想,但所有的问题都可以用初等的技术来解决,当然,需要以巧妙的方式将这些技术结合起来.本书可作为准备参加数学竞赛的初高中生以及想扩大数学视野的读者的参考资料.
Б.П.吉米多维奇是前苏联有影响的教育家和数学家。他主编的《吉米多维奇数学分析习题集》(含4462道习题),内容丰富,覆盖面广泛,针对性强,在我国有较大的影响,书中的许多习题,都广泛地被我国多所高等院校《微积分》教材所采用,有些题目甚至出现在全国考研等试题中。《吉米多维奇 高等数学习题精选精解》。对该书进行了精选,共分八章,每章又分若干节。在章节设置上与财经院校《微积分》教材基本一致,涉及的内容涵盖了《微积分》的全部主题,涵盖了硕士研究生入学考试数学三大纲的全部内容。
本书是高等学校文科(包括经管类)各专业的数学教材,分上、下两册。上册含一元函数的微积分和线性代数部分,内容包括初等函数、极限与连续、变化率与导数、积分、线性代数初步、矩阵与线性方程组、矩阵的特征值与特征向量、二次型。下册含多元函数的微积分、常微分方程和概率统计部分,内容包括多元函数的微分、二重积分、无穷级数、常微分方程、随机事件的概率、随机变量及其概率分布、数理统计初步。各章均配有适当、适量的习题供读者学习巩固。
本书是作者根据在北京大学和清华大学多年的教学实践过程中编写的,并增加了部分习题。内容主要内容包括多项式、行列式、线性方程组、矩阵、二次型、线性空间、线性变换和欧几里得空间。本书按教程各章习题顺序编排,使学生提高分析问题和解题的能力,加深对基本内容的理解与掌握,开发学生智能,增强对学好本门课程的信心和兴趣
本书是作者在多年教学经验的基础上撰写的一部实变函数教材,第二版在第一版使用9年的基础上作了修订,第三版特别增加了部分习题参考答案与提示。本书内容包括:集合与实数集、Lebesgue测度、可测函数、Lebesgue积分、微分和积分、Lp空间。每章后均附习题与例题,以便于读者学习和掌握实变函数论的基础知识。
本书为《高等数学(同济 七版)》(上册)的配套辅导书,本书共分为7章,每章包含知识结构图、考研大纲要求、考研试卷分值统计、本章内容概述、题型与方法、考研真题解析、教材课后习题详解、目标自测题与答案共七个部分。本书主要特点:例题种类详细,知识点的结构层次清楚,内容充实,方法性强以及与考研联系紧密。本书是针对使用该教材的教师与学生的同步辅导书,也适合作为考研数学复习的参考书。
《高等数学习题集》(第四版)是与同济大学数学系编写的《高等数学及其应用》(第二版)及吴赣昌主编的《微积分》(经管类 第三版)配套的本科院校工科类和经管类各专业学生课后综合性练习或复习用书。本习题集是在前三版习题集基础上结合新采用的教科书精细修改,增减部分内容而编写的。习题集每节后有工科类、经管类共同练习的习题,也有工科类与经管类不同的习题。每章后面还有 自我检测题 和 提高题 。在工科类或经管类题目的题号和相关节号前加 △ 或 ○ 以示区别。工科类和经管类通用的题目不加记号,个别专业使用的特殊习题在节号前加 * 号。本次习题集修订时特别增加2018年全国硕士研究生入学统一考试数学一、二、三试题和答案,供继续深造或将来报考研究生的学生尽早了解考研时高等数学等对考生的要求。
《预科数学基础教程》具备以下特点: (一)汉字认读与数学语言的结合 对于汉语基础较差,至多在中国仅仅接受过一个学期的汉语强化教学(约650学时)的预科生来说,对以汉语表述的数学上的很多专业词汇和常用语往往不知其音;或知其音,不知其意;或一知半解;所以必须让汉字教学和数学知识教学同时进行。在本书的每一节中,我们设计了“认一认”部分,专门用拼音和英文同时标注数学生词,以减少阅读和学习障碍,这是预科数学教学中不可缺少的一个环节。由于汉语数学表达的特殊性,预科生的阅读水平也是学习中国数学的一个拦路虎。为此,本教材专设“读一读”部分,使预科生能尽快适应中国数学语言的特点。 (二)直观图形与数学知识的结合 大多数留学生在本国都接触过相当于中国的初高中水准的数学课程,但以高考
本书是按照*大学数学教学指导委员会的基本要求,充分吸取当前优秀高等数学教材的精华,并结合数年来的教学实践经验,针对当前学生的知识结构和习惯特点而编写的。全书分为上、下两册。本书为上册,是一元函数微积分部分,共四章,主要内容包括函数极限与连续,一元函数微分学及其应用,一元函数积分学及其应用,微分方程。每节前面配有课前导读,核心知识点配备微课,每章后面附有章节测试和拓展阅读。本书注重知识点的引入方法,使之符合认知规律,更易于读者接受。同时,本书精炼了主要内容,适当降低了学习难度,对部分内容调整了顺序,使结构更加简洁,思路更加清晰。本书还注重知识的连贯性,例题的多样性和习题的丰富性、层次性,使读者在学习数学知识点的同时拓宽了视野,欣赏数学之美。本书可作为高等院校理工科类各专业的教材
本套《高等数学》教材是福建省教育厅高校精品课程立项建设的一个成果,是我校长期开设这门课程的经验总结,凝聚了校内、外许多老师多年辛勤劳动的心血。 吴炯圻、陈跃辉、唐振松编著的《高等数学及其思想方法与实验(上)》以数学思想方法为指导,阐述微积分学的基本内容、基本方法和有关应用,分为上下两册。上册(1~6章)包括函数与极限、导数与微分、微分中值定理与导数的应用、不定积分、定积分及其应用和微分方程;下册(7~11章)包括空间解析几何、多元函数微分学及其应用、重积分、曲线积分与曲面积分和无穷级数。各章均附有数学实验和思想方法选讲各一节,书末还附有几种常用曲线、积分表、Mathematica的使用简介与各章习题的参考答案。 《高等数学及其思想方法与实验(上)》适用于一般理工科、经济、管理各专业学
《高等数学习题全解与学习指导》分上、下两册。下册内容为向量与空间解析几何,多元函数微分学,多元函数积分学,无穷级数配套习题讲解。书中各章节的主要内容都配有精心选取的例题和习题,着重训练读者对定义与概念的理解、对定理与方法的应变能力,培养读者解决问题的逻辑思维方法和创新能力。
本书是全国高等职业、高等专科教育《高职高等教学系列教材》(该系列教材2004年被评为“北京高等教育精品教材”)之一《高等数字》的学习辅导书,本书是配合主教材《高等教育》(第二版)的学习辅导书,本书依照教材的九章内容即函数·极限·连续,导数与微分,中值定理·导数应用,不定积分,定积分及其应用,微分方程,向量代数与空间解析几何,多元函数微分学,无穷级数而编写,与第二版教材相辅相成,同步使用。新版辅导教材每章按照教学要求、内容提要与解题指导、教材习题选解、自测题与参考解答四部分内容编写。教学要求指明学生应掌握和理解的知识点;内容提要是把重点内容和容易混淆的概念给出提示,解题指导是通过典型例题的解法教会学生数学思维方法,揭示出解题规律,并通过典型例题中的点评与说明,指出初学者易犯的错误,使
《病理学与病理生理学》是“全国高等卫生职业院校课程改革规划教材”之一。其涵盖病理学与病理生理学的内容,揭示疾病发生、发展、转归的规律和机制,将病理学和病理生理学内容根据知识的衔接性进行有机整合。《病理学与病理生理学》共分十七章,包括总论和各论两部分,总论为**~十一章,主要讲述各种疾病的共同规律;各论为第十二~十七章,讲述不同系统常见疾病的特殊规律。为便于学生的学习,《病理学与病理生理学》相关章节列有案例、考点、链接和目标检测。
《大学数学实验》是普通高等教育“十二五”规划教材之一,是与刘春风、何亚丽、肖继先等主编的《高等数学》、《线性代数》、《概率论与数理统计》等教材配套的mathematica实验教材。本书共六章,主要包括mathematica软件介绍、高等数学实验、线性代数实验、概率论与数理统计实验等基本内容,此外还适当增加了数值计算方法实验和应用案例,为学生进一步使用mathematica解决问题奠定了基础。 《大学数学实验》以基本知识为背景,以数学问题为载体,以mathematica数学软件为工具,将数学知识、数学建模与计算机应用三者有机的结合起来,旨在培养学生应用数学知识解决实际问题的意识和能力。 《大学数学实验》可作为大学一、二年级开设的“大学数学实验”课程的配套教材及“数学建模”课程及其相关培训的辅助教材,也可供工程技术人员参考。
高等数学是高职高专院校各专业的一门基础课程,对于培养学生的逻辑思维能力、分析问题和解决问题的能力,以及提高综合素质,都有很大帮助。为了适应高职高专教育的需要,与时俱进,我们以*制定的《高职高专教育高等数学课程教学基本要求》为依据,全面贯彻“以应用为目的,以必须够用为度”的原则,并结合高职高专院校在培养技术应用型人才方面的教学特点,编写了《高等数学》。 《高等数学》精选大量具有实际背景的例题和习题,旨在启发学生的思维,培养学生的创新意识,以及运用数学工具解决实际问题的能力。全书共安排十一章,包括集合、映射与函数,极限与连续,导数与微分,微分中值定理及导数的应用,不定积分,定积分与广义积分,多元函数微分学,多元函数积分学,无穷级数,微分方程初步,Mathematica简介。全书内容叙述
自从1987年全国工学、经济学硕士研究生入学数学实行统一考试以来,至今已21年,共命制试卷近百份,有上千道试题。这些试题是广大参加命题的专家、教授的智慧和劳动的结晶,它既反映了《数学考试大纲》对考生数学知识、能力和水平的要求,展示出统考以来数学考试的全貌,又蕴涵着命题专家在《数学考试大纲》要求下的命题指导思想、原则、特点和趋势,是广大考生和教师了解试题信息、分析命题动态、总结命题规律直接、宝贵的手资料。 拥有一套内容完整,编排合理,分析透彻,解答规范,总结到位的数学历年真题,是广大准备考研学子的期盼。通过认真分析研究历年试题,可以发现命题的特点和趋势,找出知识之间的有机联系,总结每部分内容的考查重点、难点,归纳常考典型题型,凝练解题思路、方法和技巧。考生真正了解、消化和掌握了历年
全书分为三大部分,其中*部分为对应教材的课后习题全解以及总复习题全解,有些题目给出多种详细解法,便于读者自学参考.为了便于教师布置课后作业,原课程教材的课后习题是按节配置的,且每一章的后面均附有总复习题,配套辅导用书的章节目录体系与课程教材完全一致.第二部分为期末考试试题,第三部分是期末考试试题全解. 本书既可以作为普通高等学校经管类本科生学习《微积分》(上册)课程的配套辅导用书,也可以作为教师的教学参考用书和全国硕士研究生统一入学考试的复习用书.
本书是根据国家*工科数学课程指导委员会制定的高等数学基本要求及硕士研究生入学考试高等数学考试大纲而编写的,内容包括函数、极限、连接、一元函数微积分学、向量代数与空间解析几何、多元函数微积分学、级数及常微分方程等。 附录部分包含通用数学符号,希腊字母,初等数学(代数、三角、几何)中的一些基本公式和曲线图形,初等函数的幂数级展开式,以及几种常用曲线的方程和图形,可供查阅。 本书可作为普通高等院校工科各专业学生,电大、函授大学和业余大学工科本科学生学习高等数学的参考书,亦可供自学及报考硕士研究生人员使用。
本书是根据“数学建模”课程教学和数学建模竞赛培训活动的需要,在作者多年从事相关教学和研究工作以及指导数学建模竞赛的基础上写成的。各章相关数学知识的介绍以适用为度,通过一些典型数学建模案例分析,达到快速掌握数学建模的一些常用的基本方法。计算机完成的典型案例的主要求解过程与作图大多数提供了Matlab源程序,使学习软件的使用数学模型的求解紧密结合起来。 本书内容包括:数学建模导言、插值与拟合、微分方程建模方法、差分法建模、计算机模拟、层次分析方法、数据的统计描述与分析、回归分析方法、优化模型、确定型时间序列预测、*型时间序列预测方法等。书末附录A为数学建模训练题,附录B为Matlab使用简介。 本书可作为高等学校数学建模课程的教材,尤其适合于作为数学建模竞赛的培训教材。
《高等数学习题全解与学习指导》分上、下两册。上册内容为函数与极限,一元函数微学分,一元函数积分学,常微分方程配套习题讲解。书中各章节的主要内容都配有精心选取的例题和习题,着重训练读者对定义与概念的理解、对定理与方法的应刚能力,培养读者解决问题的逻辑心维方法和创新能力。
本书根据“农林院校大学数学——微积分教学基本要求”,结合作者多年教学经验,根据农科专业的特点,按照继承、发展与改革的精神编写而成,是集体智慧的结晶。本书共分9章,包括函数、极限与连续;导数与微分;小值定理与导数的应用;不定积分;定积分及其应用;多元函数微分学;二重积分;无穷级数;微分方程与差分方程。本书的特点是:突出应用背景,侧重微积分在农林科技中的应用,并从实际例子出发,引出微积分的一些基本概念、基本理论和方法;内容由简到难逐步展开,结构严谨,例题丰富,通俗易懂,难点分散;注重数学思想与数学文化的渗透。本书的编写参考了近年来全国硕士研究生入学统一考试数学考试大纲,内容上有所兼顾。本书可供农林类高等院校农科专业学生使用,并可作为相关专业师生的教学参考书。
本书是依据**制定的《高职高专教育高等数学课程教学基本要求》和《高职高专教育人才培养目标及规格》编写而成的。 本书汲取了部分一线优秀教师实际教学中的教改成果和国内外同类教材的优点,更强调知识点引入的实际背景,突出知识的应用。全书内容包括函数与极限、导数与微分、导数的应用、不定积分(常微分方程简介)、定积分及其应用、多元函数微积分、无穷级数等。书中每小节都附有习题,每章还附有复习题和自测题,题型丰富、题量大,便于学生自学。书中还编写了部分数学史知识和数学应用性阅读材料,以期学生开阔视野,增加数学修养,增强应用数学知识的能力。 本书可作为三年制高职高专、成人高等学历教育的数学教材,也可作为专升本或专转本学生自学的参考教材。