This third edition of Introductory Combinatorics contains extensive rewriting of some sections and the inclusion of some new material and exercises. There is enough material in this third edition for a two-semester course. A first semester could have an emphasis on counting and a second semester an emphasis on graph theory. It is difficult to assess the prerequisites for thiook. Perhaps they can be best described as the mathematical maturity achieved by the successful pletion of the calculus sequence and an elementary course on linear algebra. Use of calculus is minimal, and the references to linear algebra are few and should not cause any problem to those not familiar with it.
本书共分六章,章线性代数概要与提高,总结了后续章节需要的线性方程组和矩阵的基本知识,给出了矩阵与线性方程组的几个应用实例;第二章矩阵与线性变换,讨论了子空间与直和分解及内积空间,详细研究了线性变换与矩阵的关系,简要介绍了构造新线性空间的几种方法,例举了子空间,正交性,线性变换,张量积等的应用;第三章特征值与矩阵的Jordan标准形,证明了Schur三角化定理与Cayley-Hamilton定理,给出了矩阵在相似变换下的最简形式即Jordan标准形,讨论了特征值估计的盖尔圆盘定理,介绍了特征值与特征向量在统计学和经济学中的一些应用。
范建熊编著的《不等式的秘密(卷)》部分(1~8章)的内容主要介绍了常用的不等式,如AM—GM不等式、Cauchy—Schwarz不等式、Hslder不等式等,并给出了这些不等式新颖、有趣的证明。通过大量的例子介绍了初等不等式的证明方法和技巧,如Cauchy求反技术、Chebyshev关联技术、平衡系数法、凸函数法和导数等方法。第Ⅱ部分(第9章)是作者收集了近百个不等式的典型问题,内容丰富、解答新颖,富有启发性。《不等式的秘密(卷)》适合高中以上文化程度的学生、教师、不等式爱好者参考使用,是一本数学奥林匹克有价值的参考资料。
本书是经典的离散数学教材,为全球多所大学广为采用。本书全面而系统地介绍了离散数学的理论和方法,内容涉及数学推理、组合分析、离散结构、算法思维以及应用与建模。全书取材广泛,除包括定义、定理的严密陈述外,还配备大量的实例和图表的说明、各种练习和题目以及丰富的历史资料和网站资源。第6版在前五版的基础上做了大量的改进,使其成为更有效的数学工具。 本书可作为高等院校数学、计算机科学和计算机工程等专业的教材或参考书。
本书以线性方程组为主线、以矩阵和向量为工具,阐述线性代数的基本 概念、基本理论和方法,使全书内容联系紧密,具有较强的逻辑性,全书共 分5章,分别介绍线性方程组、矩阵代数、向量代数、特征值和特征向量以 及二次型,对每章的学习内容简述其起源和作用。 由于线性代数概念多、结论多,内容较抽象,本书尽量从简单实例人手 ,力求通俗易懂、由浅入深,对重点内容提供较多的典型例题,以帮助学生 更好地理解、掌握和运用线性代数的知识,每章有精选习题,有些选自历年 的研究生人学考试题目,书后有习题答案,专业术语均有对应的英文,本书 简单介绍了使用MATLAB求解线性代数问题的一些常见命令,希望能引起大家 的学习兴趣,较早进入MATLAB世界。 本书适合于普通高等院校非数学专业各类理工科本科生特别是计算机各 专业、电子信息
本书可作为工科类研究生矩阵论教材,全书共分6章(约50学时),主要讲解矩阵的基本理论与方法,包括线性空间与线性变换,常见的矩阵分解,广义逆矩阵,矩阵分析,矩阵的直积与非负矩阵的介绍等,各章配有相应的习题用作练习。 本书也可作为理工科学生及教师的教学参考书。
《高等学校小学教育专业教材:初等数论》特点简明、实用。内容共分五章:数的整除性、同余、数论函数、不定方程、连分数.每一章都与中学、小学数学有较密切的联系,纯理论的问题,如皮亚诺(Peano)的序数理论,因为没有太多的用处,我们就没有编到书中,每一章除对必需的知识作扼要的介绍外,还配置大量的例题,以帮助学生运用有关的知识.实践表明学生学习数论的主要困难,并不在学习有关知识,而在运用这些知识去解决问题,因此,我们将重点放在后者,同时还精选了一些习题,帮助学生巩固所学知识,个别打星号的题难度较大,可供学习较好的同学选用,培养他们的创造能力.习题均有解答或提示,供教师参考.