抽象代数I是南开大学数学专业的必修课,抽象代数II是该专业本科生的选修课和研究生的必修课,结合代数是应用非常广泛的一种代数结构,将这些内容作为该课程的内容是非常合适的。本书是作者在长期教授该课程的基础上编写而成,内容包括结合代数,张量积、张量代数,二次型、Clifford代数,群代数及其表示,某些非结合代数。 本书力求深入浅出,循序渐进,特别注意与其他课程的联系,以使读者体会到“抽象代数是制造机器的机器”这一著名论述,更能体会到“玄之又玄,众妙之门”这样的哲理。
本书系统总结了用来表达和处理模糊信息新的数学工具—清晰理论的研究成果,分析了模糊数学几个重要的基本概念如相等、包含、取大、取小等违反概念原理的问题,指出了普通的关系矩阵合成本身存在的问题。本书可供大学
本书是山东省省级精品课程“离散数学”的主讲,是全国教育科学“十一五”国家课题“我国高校应用型人才培养模式研究”重点子课题“应用型本科院校计算机专业课程体系构建研究”的研究成果。 本书系统讲解离散数学基础知识和应用方法,由六部分构成;部分数理逻辑,内容包括命题逻辑和谓词逻辑;第二部分集合论,内容包括集合的基本知识、排列与组合、递推关系、集合论在命题逻辑中的应用、关系、函数、经典集合的扩展等;第三部分数论,内容包括整除和同余;第四部分代数系统,内容包括代数系统的基本概念及性质、半群、独异点、群、环、域、布尔代数等;第五部分图论,内容包括图的基本概念及矩阵表示、几类重要的图、最短路径、关键路径等;第六部分计算机科学中的应用,内容包括形式语言与自动机、纠错码等。 本书在内容安
本书是国内正式出版的历史*悠久生命力经久不衰的线性代数教材。本书1981年初版是根据同济大学数学教研室主编的《高等数学》(*版)中的第13章修改而成的,后经同济大学数学系及众多专家的不断锤炼,已成为千万师生的*选择。本书的知识体系与框架已得到广大读者的认可,结构流畅,主次分明,论述通俗易懂,不仅适合教学,更是自学和考研的参考书。本书编者精心打造了《线性代数附册 学习辅导与习题全解(同济第五版)》与教材配套。
陈建明、曾明、刘国荣编著的《离散数学(第3版)》系统地介绍了各种离散的数学结构,其中包括数理逻辑、集合论、代数系统和图论的基本内容。本书以证明方法和证明过程为重点,以关系的理念贯穿全书。 在编写过程中力求内容精练、重点突出、深入浅出,有助于读者自我学习。书中内容可满足计算机专业后继课程的需要。 《离散数学(第3版)》可作为计算机软件专业、计算机通信专业、计算机制造专业和各类相关信息专业的本科生“离散数学”课程的教科书及教学参考书,同时也可供有关考研人员和自考人员学习和参考。