《从一元一次方程到伽罗瓦理论》从 解三次和四次多项式方程的故事 、 向五次方程进军 、 一些数学基础 、 扩域理论 、 尺规作图问题 、 两类重要的群与一类重要的扩域 、 伽罗瓦理论 及 伽罗瓦理论的应用 八个方面逐步展开。按历史发展,从解一元一次方程讲起,详述了一元二次方程、一元三次方程,以及一元四次方程的各种解法,从而自然地引出了群、域,以及域的扩张等概念。在讨论了集合论后,又用近代方法详细阐明了对称群、可迁群、可解群、有限扩域、代数扩域、正规扩域以及伽罗瓦理论等,引导读者一步步地去解决一系列重大的古典难题,如尺规作图问题、三次实系数不可约方程的 不可简化情况 ,以及伽罗瓦的根式可解判别定理等。 《从一元一次方程到伽罗瓦理论》可供高中学生、理工科大学生、大中学校数学教师,以及广大的爱好研读数学
这是《不等式的秘密》一书的第二卷,取名为《不等式的秘密(第2卷高级不等式)》。在本卷你可以看到五种方法,这些方法不仅能提升解决不等式的能力,而且还可以减少问题的复杂性并给出漂亮的证明。 在此,你可以找到证明不等式的现代方法:整合变量法、乎方分析法、反证法、归纳法和经典不等式的使用方法。正如你阅读过的本书卷一样,这里有许多漂亮和困难的问题训练你使用这些方法的技能。 我们希望,作者范建熊倾注在本书关于不等式方面的热情和汗水对你有用。
单壿所著的《初等数论的知识与问题》共分两编,编初等数论的知识,第二编100道数论问题及解答。编包括第1章数的整除性,第2章同余,第3章数论函数,第4章不定方程,第5章连分数以及习题答案与提示;第二编包括第6章100道数论问题,第7章解答;附录包括2009年国家集训队的几道试题及空间格点三角形的面积。 《初等数论的知识与问题》适合于数学奥林匹克竞赛选手和教练员,初、高等学校师生以及研究人员和数论爱好者。
本书为组合数学的经典教材,共分为六章。书中列举了大量组合问题和例题,并尽可能使用初等方法来解决它们,以使广大读者能够掌握组合论的思想和方法。本书内容丰富,叙述由浅入深,每章都有习题,另附习题解答。 本书对初学组合论的读者是一本较好的入门书,对于中学教师、大学理工科学生和广大的工程技术人员以及从事科学研究的工作者也是一本较好的参考书。
《组合数学及应用》围绕组合计数问题,将数学原理与实际应用相结合,介绍集合与多集上的排列与组合、二(多)项式定理、二项分布与信息熵、鸽巢原理、拉姆齐理论、生成函数、递归关系(包括斐波那契数、斯特林数、卡特兰数、调和数的递归关系)、容斥原理、伯恩赛德计数定理和波利亚计数定理。《组合数学及应用》共分八章,每一章都配有一个计算机、电子信息、人工智能等领域的应用案例,以展示数学原理或方法在这些专业问题上的应用。此外,每章末附有习题,供读者练习和进一步思考,以巩固和深化理解。《组合数学及应用》围绕组合计数问题,将数学原理与实际应用相结合,介绍集合与多集上的排列与组合、二(多)项式定理、二项分布与信息熵、鸽巢原理、拉姆齐理论、生成函数、递归关系(包括斐波那契数、斯特林数、卡特兰数、调和数
介绍抽象代数学的基础知识,内容有:群论、环论、域论以及域上的伽罗华理论,本书特点:内容丰富、处理简洁。
《从求解多项式方程到阿贝尔不可能性定理 细说五次方程无求根公式》试图在高中数学的基础上,把初等数论、高等代数中的一些重要概念与理论串在一起详加论述。 《从求解多项式方程到阿贝尔不可能性定理 细说五次方程无求根公式》分为六个部分,从 多项式方程的求解与数系的扩张 、 整数的一些基本概念、定理与理论 、 数域、扩域与代数扩域的一些基本理论 、 多项式的一些基本概念、定理与理论 、 阿贝尔引理、阿贝尔不可约定理以及一些重要的扩域 、 多项式方程的根式求解、克罗内克定理与鲁菲尼 阿贝尔定理 逐步展开,尽可能地用通俗易懂的方式细说 不可能性定理 的种种方面。 《从求解多项式方程到阿贝尔不可能性定理 细说五次方程无求根公式》可供高中学生、理工科大学生、大中学校数学教师以及广大的数学爱好者在学习与教学解多项式方
《现代数学基础·伽罗瓦理论:天才的激情》是一本专门讲述伽罗瓦理论的教材。内容包括伽罗瓦理论基本定理和多项式方程的根式可解性、伽罗瓦群的计算及其反问题,《现代数学基础·伽罗瓦理论:天才的激情》强调通过伽罗瓦对应,可将代数数域中的问题转化成群论的问题加以解决。作为这种思想的应用,证明了代数基本定理,解决了e和π的超越性及尺规作图的四大古代难题。为方便读者查阅,附录中详细梳理了所要用到的群、环、域方面的结论。每节配有充足的习题并包含提示。《现代数学基础·伽罗瓦理论:天才的激情》可作为高等学校数学类各专业的教材,也可供其他相关专业参考。
《从代数基本定理到超数:一段经典数学的奇幻之旅(第二版)》分为四个部分,共计十四章,如 从自然数系到有理数系 、 无理数与实数系 、 代数、基本定理的定性说明 、 业余数学家阿尔岗的证明 、 美国数学家安凯屈的证明 、 圆周率及其元理性 、 自然对数的底数e及其元理性 、 有关多项式的一些理论 、 代数扩域、有限扩域与代数元域 等。
内容简介 近世代数是代数学的一个基础学科,讲述代数基本结构的特性.本书除系统介绍群、环和域的基础知识(包括域的有限伽罗瓦扩张理论)之外,还力图强调近世代数中的思想和方法.书中有大量习题.除主线内容之外,还增加一些附录用来开拓和深化所学内容.本书在中国科学技术大学讲授多年的讲义基础上修改写成,可作为高等学校数学系基础课教材,也可供数学工作者和通信、计算机科学等领域的工程技术人员参考.
这是一本介绍组合数的书.高中阶段已经学习过排列与组合的基础知识,对于排列与组合有了初步的了解,但是还有许多问题,例如,组合恒等式如何证明?怎样利用组合数解决一些数列的有关问题?怎样确定组合数的奇偶性?怎样利用组合数进行因式分解? 怎样利用组合数研究不定方程的整数解的个数?怎样利用组合数计算空间分割的数目等.这些问题大家接触的并不多,但是每个中学生又都能解决,这本书就要对这样一些与组合数有关的数学问题做一些粗浅的介绍,以引起大家对组合数研究的兴趣.
本书与北京大学数学系几何与代数教研组编写的《高等代数(第三版)》相配套,在编写上也遵循此教材的顺序。全书共分9章,42节,111个条目,约210个问题,涉及多项式、行列式、线性方程组、矩阵、二次型、线性空间、线性变换、 -矩阵、欧式空间。 本书大量采用全国部分高校历届硕士研究生高等代数入学试题,并参阅了50余种教材、文献及参考书,经过反复推敲、修改和筛选,在长期教学实践的基础上编写而成。选材具有典型性、灵活性、启发性、趣味性和综合性,配套的各节练习题可提高学生进一步分析问题和解决问题的能力,对培养学生的能力极为有益。
本书内容包括三部分:集合论、图论、近世代数。全书共分十五章,讨论了集合及其运算、映射、关系、无穷集合及其基数、模糊集合论、图的基本概念、树和割集、连通度和匹配、平面图和图的着色、有向图、半群和幺半群、群、环和域、格、布尔代数。每节后配有难度不同的习题。 本书可用作高等学校计算机科学与技术/工程等专业的教材,也可供有关专业的科技人员参考。
numbers measure size, groups measure symmetry. the firststatement comes as no surprise; after all, that is what numbers arefor. the second will be exploited here in an attempt to introducethe vocabulary and some of the highlights of elementary grouptheory. a word about content and style seems appropriate. in this volume,the emphasis is on examples throughout, with a weighting towardsthe symmetry groups of solids and patterns. almost all the topicshave been chosen so as to show groups in their most natural role,acting on (or permuting) the members ora set, whether it be thediagonals of a cube, the edges of a tree, or even some collectionof subgroups of the given group. the material is divided intotwenty-eight short chapters, each of which introduces a new resultor idea.a glance at the contents will show that most of themainstays of a first course arc here. the theorems of lagrange,cauchy, and sylow all have a chapter to themselves, as do theclassifcation of finitely generated abelian groups, t
《模曲线导引(第2版)》的目的在于介绍模形式的几何理论的背景知识。本书可供数学系的研究生作为教材,也可以供从事数论、代数几何等专业的数学工作者使用。作者在2002年出版本书版之后,近些年又做了大量的修订,使得该书的内容更完善更前沿。
本书在第一版的基础上增加了与代数几何和组合数学相交叉的内容。 本书在本科抽象代数课程的基础上讲述了交换代数的基本的也是重要的Hilbert基定理、 Hilbert零点定理、理想的准素分解、相伴素理想、维数、重复度、正则环和正规环等内容.同时,对应地讨论了代数集的基本性质、代数集的分解和维数、代数簇的非奇异性和正规性等,还讨论了组合交换代数的基本内容。
胡里克编著的《初等代数几何(第2版)》是代数几何的一个导引,其目的是给出代数几何的基本概念和方法,并用大量例题对它们进行解释,这可以让读者在一些补充资料的帮助下独立进行工作。《初等代数几何(第2版)》特意保持使用初等语言。书中一方面展开一般理论,另一方面则处理具体的例题和应用,并着重于这两者之间的相互作用和联系。 《初等代数几何(第2版)》适合大学数学系的本科生阅读参考,他们已经学过了代数和函数论的基础课程。《初等代数几何(第2版)》的新版做了重大修改,增添了许多新图和习题,所有习题都有解题提示。
This exposition of Galois theory was originally going to be Chapter I of the continuation of my book Ferrnat's Last Theorem, but it soon outgrew any reasonable bounds for an introductory chapter, and I decided to make it a separate book. However, this decision was prompted by more than just the length. Following the precepts of my sermon "Read the Masters!" [E2], Imade the reading of Galois' original memoir a major part of my study of Galois theory, and I saw that the modern treatments of Galois theory lacked much of the simplicity and clarity of the original. Therefore I wanted to write about the theory in a way that would not only explain it, but explain it in terms close enough to Galois' own to make his memoir accessible to the reader, in the same way that I tried to make Riemann's memoir on the zeta function and Kummer's papers on Fermat's Last Theorem accessible in my earlier books, [Eli and [E3]. Clearly I could not do this within the confines of one expository chapter
埃瓦里斯特·伽罗华是法国对函数论、方程式论和数论作出重要贡献的数学家,他的工作为群论奠定了基础;在父亲自杀后,他放弃投身于数学生涯,注册担任辅导教师,结果因撰写反君主制的文章而被开除,且因信仰共和体制而两次下狱。伽罗华死于一次近乎自杀的决斗,引起了后人的种种猜测。可能是被保皇派或警探所激怒而致,时年21岁。他被公认为是数学史上两个*浪漫主义色彩的人物之一。这本《伽罗瓦对应导论(第2版)》是英文版。
本书内容包括行列式、矩阵、n维向量与线性方程组、线性空间、矩阵的对角化、实二次型和线'性变换等线'性代数的基本知识以及基本线性代数问题的计算机实现,通过将线性代数的基本知识与计算机相结合使学生能利用数学软件解决一些简单的线性代数的实际问题。书末还给出了有关的Matlab软件的使用说明。
陈建明、曾明、刘国荣编著的《离散数学(第3版)》系统地介绍了各种离散的数学结构,其中包括数理逻辑、集合论、代数系统和图论的基本内容。本书以证明方法和证明过程为重点,以关系的理念贯穿全书。在编写过程中力求内容精练、重点突出、深入浅出,有助于读者自我学习。书中内容可满足计算机专业后继课程的需要。 《离散数学(第3版)》可作为计算机软件专业、计算机通信专业、计算机制造专业和各类相关信息专业的本科生“离散数学”课程的教科书及教学参考书,同时也可供有关考研人员和自考人员学习和参考。