本书是一本非数学专业主要是文科及艺术类专业的数学教材,讲述方式活泼,案例贴近生活,读者可以在轻松学习中体会数学乐趣和意义。全书分为三大部分:归纳和演绎、逻辑和数;代数和几何;概率统
本书从数学分析的角度阐述了矩阵分析的经典和现代方法,不仅包括由于数学分析的需要而产生的线性代数的论题,还广泛选择了其他相关学科如微分方程、*化、逼近理论、工程学和运筹学等有关的论题。本书主要内容有:特征值、特征向量和相似性、酉相似、schur三角化及其推论、正规矩阵、标准形和包括jordan标准形在内的各种分解、lu分解、qr分解和酉矩阵、hermite矩阵和复对称矩阵、向量范数和矩阵范数、特征值的估计和扰动、正定矩阵、非负矩阵。 本书逻辑清晰,结构严谨,既注重教学又注重应用。在每一章的开始,作者都介绍几个应用来引入本章的论题以激发学习兴趣。在章节末尾,作者还独具匠心地编排了许多具有探索性和启发性的习题,引导读者提高描述和解决数学问题的能力。本书是一本畅销的教材,对从事线性代数纯理论研究和应用研究的人
《圆锥曲线论》共8卷,是一部经典巨著。 前4卷的希腊文本和其次3卷的阿拉伯文本保存了下来,最后一卷遗失。《圆锥曲线论》是由阿波罗尼奥斯所写的一部经典巨著,它可以说是代表了希腊几何的最高水平。本书为第5-7卷中文翻译版本,属于拓广部分。本书提出了很多新的性质,推广了梅内克缪斯的方法,讨论了椭圆上短轴上的点到曲线的最小线和最大线以及最小线与最大线的性质和关系。作为综合几何最高水平的《圆锥曲线轮》是世界数学史的一座丰碑,他的数学内容、数学思想在人类文化史上占有重要地位。
《代数几何学原理》(EGA)是代数几何的经典著作,由法国著名数学家Alexander Grothendieck(1928 2014)在J. Dieudonn 的协助下于20世纪50 60年代写成。在此书中,Grothendieck首次在代数几何中引入了概形的概念,并系统地展开了概形的基础理论。EGA的出现具有划时代的意义,对现代数学产生了多方面的深远影响。 首先,EGA为代数几何建立了极其广阔、完整和严格的公理化概念体系和表述方式(现已成为代数几何的标准语言),极大地整合了这一数学分支的古典理论,并为后来的发展奠定了坚实的基础。其次,EGA把数论和代数几何统一在一个理论框架之内,促成了平展上同调等理论的建立,进而导致了著名的Weil猜想的证明的完成(由Grothendieck的学生Deligne所完成,并因此获得Fields奖)。当前数论和代数几何中的许多重大进展都在很大程度上归功于EGA所建立的思想方法,比如Mordell
《代数学方法(*卷) 基础架构》主要目的是介绍代数学中的基本结构,着眼于基础数学研究的实际需求。全书既包括关于群、环、模、域等结构的标准内容,也涉及范畴和赋值理论,在恪守体系法度的同时不忘代数学和其他数学领域的交融。《代数学方法(*卷) 基础架构》可供具有一定基础的数学专业本科生和研究生作为辅助教材、参考书或自学读本之用。
本书为《代数学教程》第六卷,全书系统地讨论了代数学中线性代数的各个内容,如线性方程组理论、矩阵的理论基础、二次型与埃尔米特型、抽象的向量空间、具有度量的线性空间等,在编写过程中作者引用了大量的文献,并附于书末,供读者参考使用. 本书适合高等院校理工科师生及数学爱好者阅读.
本书根据James R.Munkres所著“Elements of Algebraic To-pology”(Perseus出版社1993年版)译出。 全书共分8章74节,内容丰富,论述精辟,主要内容包括单纯同调群及其拓扑不变性、Eilenberg-Steenrod公理系统、奇异同调论、上同调群与上同调环、同调代数、流形上的对偶等。
本书为代数学引论,其主要内容为线性代数多项式理论,除在第10章介绍了环,城等基本概念外,还在最后一章介绍了群论的初步知识 本书可供高等院校本科生、研究生及数学爱好者参考使用。
本书作者是世界著名数学家R. Langlands (朗兰兹) 的弟子。在数学领域中,著名的朗兰兹纲领是一系列影响深远的构想,联系数论、代数几何与约化群表示理论。本书则从数学底层讲述微分方程和代数这两个数学重要分支的内在联系,通过讲述非交换环、单径表示等内容,向读者介绍在一般微分方程和代数的数学书中不常见的内容,展示微分方程和代数的发展史中的光辉一页,立意颇高。 本书是《现代数学基础》系列中的一本,具体内容包括:微分方程与代数、复微分方程、p进微分方程、形式偏微分方程、联络的同调代数、G丛、Simpson对应和微分算子层等,可供数学及相关专业的师生及科研人员使用参考。
本书是根据苏联哈尔科夫大学出版社出版的苏什凯维奇于1954年所著《数论初等教程》译出的。 本书共分为七章,分别介绍了数的可约性、欧几里得算法与连分数、同余式、平方剩余、元根与指数、关于二次形式的一些知识、俄国和苏联数学家在数论方面的成就。本书可作为综合大学及师范学院数学系的数论教科书,也可供自修数论的读者和中学教师参考阅读。
《圆锥曲线论》共8卷,是一部经典巨著。 前4卷的希腊文本和其次3卷的阿拉伯文本保存了下来,最后一卷遗失。《圆锥曲线论》是由阿波罗尼奥斯所写的一部经典巨著,它可以说是代表了希腊几何的最高水平。本书为第5-7卷中文翻译版本,属于拓广部分。本书提出了很多新的性质,推广了梅内克缪斯的方法,讨论了椭圆上短轴上的点到曲线的最小线和最大线以及最小线与最大线的性质和关系。作为综合几何最高水平的《圆锥曲线轮》是世界数学史的一座丰碑,他的数学内容、数学思想在人类文化史上占有重要地位。
代数几何是数学中的核心学科,与数学的众多分支相关。本书是代数几何的入门课本,其目标是在假设读者具有最少预备知识的情况下,介绍概形上凝聚层的上同调理论,为读者学习更专业的代数几何做充分准备。书中涵盖了Grothendieck的经典著作《代数几何原理》(EGA)I-III 中的主要内容,并假设读者熟悉Atiyah和Macdonald编写的《交换代数导论》的第1-8章。本书为第二版,除纠正第一版中的错误、改进表述外,作者还新增了练习题。 本书适合高等院校数学及相关专业作为代数几何的教科书使用。
《代数几何学原理》(EGA)是代数几何的经典著作,由法国著名数学家Alexander Grothendieck(1928 2014)在J. Dieudonn 的协助下于20世纪50 60年代写成。在此书中,Grothendieck首次在代数几何中引入了概形的概念,并系统地展开了概形的基础理论。EGA的出现具有划时代的意义,对现代数学产生了多方面的深远影响。 首先,EGA为代数几何建立了极其广阔、完整和严格的公理化概念体系和表述方式(现已成为代数几何的标准语言),极大地整合了这一数学分支的古典理论,并为后来的发展奠定了坚实的基础。其次,EGA把数论和代数几何统一在一个理论框架之内,促成了平展上同调等理论的建立,进而导致了著名的Weil猜想的证明的完成(由Grothendieck的学生Deligne所完成,并因此获得Fi elds奖)。当前数论和代数几何中的许多重大进展都在很大程度上归功于EGA所建立的思想方法,比如Morde
数是如何出现的?早期那些五花八门、千奇百怪的计数文字,如何变成了通用的阿拉伯数字?是谁发明或发现了代数?运算的规则是怎样建立的? 几何是怎样出现的?几何与代数有着什么样的紧密关系? 本书带您回到远古、中古、近代,为您讲述几何与代数画卷中的一个个小故事,认识故事中的主角:他们出现在从远古到十八世纪的历史长卷里,有着各异的背景、身份和个性;他们生活在世界上不同种族集居的地区,生存的环境大多很恶劣 或战火弥漫,或饥病蔓延,或陷于阴谋处于动乱,数千年的历史进程,和平只是难得的瞬间 他们历尽磨难,但执着地思考、探索、追寻。他们中间,虽然有罕见的天才,但很多并非专业的数学家,更多的,甚至连名字也没有留下来。正是他们一砖一石、一代又一代的努力,为现代数学这座精美富丽的殿堂搭建起坚实的地基!
内容简介 本书是美国著名数学竞赛专家TituAndreescu教授及其团队精心编写的试题集系列中的一本。 本书从解题的视角举例说明初等代数中的基本策略和技巧,书中涵盖了初等代数的众多经典论题,包括因式分解、二次函数、方程和方程组、Vieta定理、指数和对数、无理式、复数、不等式、连加和连乘、多项式以及三角代换等主题。为了让读者能够对每章中讨论的策略和技巧进行实践,除例题之外,作者精选了108个不同的问题,包括54个入门问题和54个高级问题,给出了所有这些问题的解答,并对不同的方法进行了比较。 本书适合于热爱数学的广大教师和学生使用,也可供从事数学竞赛工作的相关人员参考。
本书英语原版*初由美国数学会(American Mathematical Society)出版,原书名是Combinatorial Problems and Exercises: Second Edition, 原书作者是 L szl Lov sz,原书版权声明是 ?1979 held by the American Mathematical Society.本翻译版由高等教育出版社有限公司经美国数学会授权和许可出版。
《矩阵计算(英文版?第4版)》是数值计算领域的名著,系统介绍了矩阵计算的基本理论和方法。内容包括:矩阵乘法、矩阵分析、线性方程组、正交化和小二乘法、特征值问题、Lanczos方法、矩阵函数及专题讨论等。书中的许多算法都有现成的软件包实现,每节后附有习题,并有注释和大量参考文献。新版增加约四分之一内容,反映了近年来矩阵计算领域的飞速发展。 《矩阵计算(英文版?第4版)》可作为高等院校数学系高年级本科生和研究生教材,亦可作为计算数学和工程技术人员参考书。
《解析数论问题集(第2版)》是课后大约500个解析数论习题的汇编,同时也是解析数论的基本教程。全书共分为两部分:习题与解答。读者可通过这些习题学习解析数论的一些重要方法,了解解析数论的研究领域。 《解析数论问题集(第2版)》可供大专院校数学系师生、研究生及相关的学科工作者阅读。
本书系统和全面地介绍了组合优化的基本理论和重要算法。全书共分22章,内容既包括图论、线性和整数规划以及计算复杂性等基础部分,又涵盖了组合优化中若干重要问题的经典结果和最新进展.除了对理论的深刻讨论外,书中还提供了丰富的研究文献和具有挑战性的习题。
呈献给读者的这部作品是卷一的续作,目的是在读者了解代数学中的基本结构的前提下,介绍可以合理地泛称为线性代数的一系列方法、思想和技巧。这些方法的应用穿透当代数学的方方面面,而为了尽可能全面地回应实际需求,便有必要将相关技术锻造为更纯粹也更精炼的形式。范畴与函子对此是不可或缺的语言。本书预设的背景知识包括对群、环、模、域等代数结构与范畴论的了解,读者可以参考卷一。卷二分为内篇、外篇和附录三大部分,内容包括:范畴论、Abel范畴、复形、三角范畴与导出范畴、谱序列、群的同调与上同调、单子论、单纯形方法、对偶性等,主要面向从事相关研究或怀抱兴趣的高年级本科生、研究生、教研人员和自学者。
丢番图逼近论是数论的重要而古老的分支之一 , 圆周率 的估计 、 天文研究和古历法的编制 , 以及连分数展开 , 超越数的构造 , 等等 , 都促成这个分支的形成 。 近代和现代数学的发展 , 特别是丢番图方程和超越数论的研究 , 以及一致分布点列在拟 Monte Carlo 方法中的应用等 , 又使它发展成为一个活跃的当代数论研究领域 。Diophantine Approximation 是关于丢番图逼近论的一本专著 ,1980 年列入 Springer 出版社著名的 Lecture Notes in Mathematics 系列丛书出版 , 问世后即被各国数论研究人员广泛引用 , 成为一本关于丢番图逼近论的经典著作 。