本书是由数学天元基金和高等教育出版社共同推出的《俄罗斯数学教材选译》中的一本。 本书是作者在莫斯科大学力学-数学系讲授多遍数学分析的基础上写成的。全书共二卷,自1981年版出版以来,至今已经修订为第4版。在内容方面,作者力图使与其平行的以及后继的分析、代数和几何方面的现代数学课程之间联系更加紧密,把重点移到一般数学中最有本质意义的那些概念和方法上,并改进语言的叙述,使之与现代数学科学文献的语言适当接近;另一方面,在保持数学一般理论叙述严谨性的同时,对反映其自然科学源泉和应用的要求也有充分体现。 俄罗斯科学院院士、世界数学家В.И.阿诺尔德这样评价本书:В.А.卓里奇的教科书是现有供大学数学系、物理系学生用的分析教科书中最成功的。它与传统分析教科书的重要区别在于,它一方面更贴近自然科学 (特别是
《测度论(英文版)》综合性强,清晰易懂。全面介绍了测度和积分,重在强调学习分析和测度必需的和相关的一些话题。前五章讲述了抽象测度和积分,通过这五章,读者可以说精通积分知识;第六章讲述微分知识,包括Rd上变量的处理。《测度论(英文版)》的特点是初步并且全面的讲述局部紧Hausdorff空间上的积分知识、Polish空间上的解析和Borel子集和局部紧群上的Haar测度。书中提供了学习目前感兴趣的领域,尤其是调和分析和概率论的工具。每章末都附有具有代表性的习题,从常规题型到扩展训练都有,并且对较高难度的习题附有提示。
本书包括小波变换、一元多分辨分析与正交小波、紧支集实小波、小波包、多元小波、双正交小波、样条小波、小波提升理论等发展较为成熟的小波分析基本内容。本书讲解透彻,证明细致,特别关注小波分析解决实际问题的原理。 本书不要求读者具有高深的数学基础,可供希望了解小波分析基本内容及原理的读者参考,也可作为研究生与高年级本科生的小波分析教材使用。
变分学是数学分析的一个重要组成部分,是一门与其他数学分支密切联系、并有广泛应用的数学学科。近几十年来,变分学不论是在理论上还是在应用中都有了很大发展,与数学其他分支的联系也更加紧密,已经成为大学数学教育不可缺少的部分。 《变分学讲义》是作者在北京大学为高年级本科生和低年级研究生开设“变分学”课程所用的讲义。全书共二十讲,分为部分:部分(一到八讲)是经典变分学的基本内容,第二部分(九到十四讲)重点介绍直接方法及其理论基础,第三部分(十五到二十讲)是专题选讲。其材料的选取,内容的编排,问题与概念的表述,以及证明的分析与讲解均极具特色。 《变分学讲义》适用于数学及相关专业的本科生、研究生、教师以及研究人员,也可供工科、经济学、管理学等专业的教师和学生使用参考。
本书介绍了现代数值近似技术的理论及实用知识,解释了它们的工作原理。同它的前几个版本一样,该书仍将重点放在近似技术的数值分析上,以便为读者今后的学习打下坚实的数值分析与科学计算基础。本书内容丰富、翔实,可以根据不同的学习对象和学习目的,选择、组织、串联相应的章节,形成侧重于理论或是侧重于实用的两种学习策略。书中的每个概念均以大量的例子说明,同时书中还包含2000多个习题,范围从方法、算法的基本应用到理论的归纳与扩展,涉及物理、计算机、生物、社会科学等多个不同的领域。通过这些实例,进一步说明在现实世界中,数值方法是如何被应用的。第七版新增了两个突出的部分,一是前承条件共轭梯度方法,为线性方程系统提供了更完备的解决方法;另一部分是同伦与连续方法,为非线性方程系统的近似求解提供了不同的方
《测度论(英文版)》综合性强,清晰易懂。全面介绍了测度和积分,重在强调学习分析和测度必需的和相关的一些话题。前五章讲述了抽象测度和积分,通过这五章,读者可以说精通积分知识;第六章讲述微分知识,包括Rd上变量的处理。《测度论(英文版)》的特点是初步并且全面的讲述局部紧Hausdorff空间上的积分知识、Polish空间上的解析和Borel子集和局部紧群上的Haar测度。书中提供了学习目前感兴趣的领域,尤其是调和分析和概率论的工具。每章末都附有具有代表性的习题,从常规题型到扩展训练都有,并且对较高难度的习题附有提示。
本书是一本非常的图论入门书,自从1972年出版版以来,深受广大读者的欢迎,不断再版,1996年已经出版了第四版。本书用浅显易懂的语言,大量的实例和练习介绍了图论的基本知识以及横贯和拟阵等一些比较艰深的组合数学知识,读来通俗易懂,引人入胜。书中包含了大量的图论应用实例,不管是对于数学专业的师生还是对于工程专业的科技工作者都有很大的吸引力。目次:引言;概念和离子;路和圈;树;平面性;图的着色;有向图;匹配,婚姻定理和Menger定理;拟阵。
《傅里叶分析导论》由在国际上享有盛誉普林斯大林顿大学教授Stein撰写而成,是一部傅立叶分析的入门教材,理论与实践并重,为了便于非数专业的学生学习,全书内容简明、易懂.全书分为三部分,部分介绍傅立叶级数的基本理论及其在等周不等式和等分布中的应用;第二部分研究傅立叶变换及其在经典偏微分方程及Radom变换中的应用;第三部分研究有限阿贝尔群上的傅立叶分析。书中各章均有练习题及思考题。目次:傅立叶积分的起源;傅立叶级数和基本性质;傅立叶级数的收敛性;傅立叶积分的应用;IR上的傅立叶变换;IRd上的傅立叶变换;有限傅里叶分析;Dirichlet定理。
本书介绍了现代数值近似技术的理论及实用知识,解释了它们的工作原理。同它的前几个版本一样,该书仍将重点放在近似技术的数值分析上,以便为读者今后的学习打下坚实的数值分析与科学计算基础。本书内容丰富、翔实,可以根据不同的学习对象和学习目的,选择、组织、串联相应的章节,形成侧重于理论或是侧重于实用的两种学习策略。书中的每个概念均以大量的例子说明,同时书中还包含2000多个习题,范围从方法、算法的基本应用到理论的归纳与扩展,涉及物理、计算机、生物、社会科学等多个不同的领域。通过这些实例,进一步说明在现实世界中,数值方法是如何被应用的。第七版新增了两个突出的部分,一是前承条件共轭梯度方法,为线性方程系统提供了更完备的解决方法;另一部分是同伦与连续方法,为非线性方程系统的近似求解提供了不同的方