本书系统介绍数学建模的理论及应用,作者将数学建模的过程归结为五个步骤(即“五步方法”),并贯穿全书各类问题的分析和讨论中。本书阐述了如何使用数学模型来解决实际问题,提出了在组建数学模型并且求解得到结论之后如何进行灵敏性和稳健性分析。此外,将数学建模方法与计算机的使用密切结合,不仅通过对每个问题的讨论给了很好的示范,而且配备了大量的习题。
本书阐述现代科学与工程计算中各种常用算法的基础知识与编程实现方法,内容包括设计数值算法的原则、非线性方程的数值解法、线性方程组的直接法与迭代法、函数插值法与昀小二乘拟合法、数值积分法与数值微分法、常微分方程初值问题的数值解法、矩阵特征值与特征向量计算的数值方法等。每章首先阐述基础知识要点,其次给出相应算法的详细描述,然后通过例题给出实现算法的完整程序与运行结果,最后在结尾部分针对介绍的算法配备了丰富的编程计算习题。附录中给出了全部习题的参考答案。
《微积分 学习辅导》是微积分学习辅导书。全书共11章,分别为函数、极限与连续、导数与微分、微分中值定理与导数的应用、不定积分、定积分及其应用、向量与空间解析几何初步、多元函数微分学、二重积分、微分方程与差分方程、无穷级数。每章分为本章知识结构图、内容精要、练习题与解答、自测题AB卷与答案和本章典型例题分析。 张伟、汪赛、朱金艳、张倩、李晓飞编著的《微积分 学习辅导》可作为学生学习微积分课程的同步学习辅导书,也可作为研究生考试轮复习用书,还可供教师和相关人员参考。
偏微分方程是数学学科的一个重要分支,它与其他数学分支均有广泛的联系,而且在自然科学与工程技术中有广泛的应用.本书主要讲述偏微分方程的一般理论,广义函数与sob01ev空间,椭圆边值问题,能量方法,算子半群等内容,为提高读者的整体数学素质提供了必要的材料,也为部分读者进一步学习与研究偏微分方程理论做了准备。 本书可作为高等院校数学系(数学、应用数学、计算机数学等专业)与有关理工科的研究生教材,也可作为数学、工程等领域的青年教师或科研人员的参考书。
全书共分成8章,主要包括:复数、复函数、作为映射的解析函数、复积分、级数与乘积展开、共形映射、狄利克雷问题、椭圆函数以及全局解析函数。此外,大部分章节后都有练习,便于学生掌握书中内容,其中加上“*”号的练习供学有余力的学生选做。本书假定读者具备大学二年级的数学基础,可作为高等院校高年级本科生以及研究生的教材和参考书。
全书共分成8章,主要包括:复数、复函数、作为映射的解析函数、复积分、级数与乘积展开、共形映射、狄利克雷问题、椭圆函数以及全局解析函数。此外,大部分章节后都有练习,便于学生掌握书中内容,其中加上“*”号的练习供学有余力的学生选做。本书假定读者具备大学二年级的数学基础,可作为高等院校高年级本科生以及研究生的教材和参考书。
变分学是数学分析的一个重要组成部分,是一门与其他数学分支密切联系、并有广泛应用的数学学科。近几十年来,变分学不论是在理论上还是在应用中都有了很大发展,与数学其他分支的联系也更加紧密,已经成为大学数学教育不可缺少的部分。《变分学讲义》是作者在北京大学为高年级本科生和低年级研究生开设“变分学”课程所用的讲义。全书共二十讲,分为部分:部分(一到八讲)是经典变分学的基本内容,第二部分(九到十四讲)重点介绍直接方法及其理论基础,第三部分(十五到二十讲)是专题选讲。其材料的选取,内容的编排,问题与概念的表述,以及证明的分析与讲解均极具特色。《变分学讲义》适用于数学及相关专业的本科生、研究生、教师以及研究人员,也可供工科、经济学、管理学等专业的教师和学生使用参考。
本书不仅详细叙述了拓扑线性空间,包括若干子类局部凸空间、赋范空间、内积空间的公理系统、结构属性及其之上的强弱拓扑、共轭性,还深入论述了该学科离不开的几个专题,即形式上 为一般的三大基本定理与泛函延拓定理, Banach代数特别是Gelfand变换的基本理论,紧算子及其谱理论,自伴算子的谱理论,无界正常算子的谱理论以及Bonsall的闭值域定理,不变子空间的Lomonosov定理等;而且给出了以上基本理论的丰富多彩的应用,包括完整的关于广义函数、Fourier变换及其偏微分方程基本解的论述,对于Tauber型定理的应用,von Neumann的平均遍历定理,算子半群的Hille-Yosida定理并应用于发展方程等。
本书以高等学校数学类专业教学指导委员会 会议精神为指导,为适应新时期教学改革与专业课程建设的需要,结合应用型普通本科院校相关专业教学特点进行编写。 全书分为上、下两册。上册内容包括:实数集与函数,数列极限,函数极限,连续函数,导数与微分,微分中值定理及其应用,不定积分,定积分,定积分的应用,反常积分等。附录有微积分学简史、希腊字母简表。书内各节后均配有相应的习题,书末附有部分习题答案与提示。 本书体系完备、选材恰当、重点突出、难度适宜、例题习题丰富。可作为应用型普通高等院校数学与统计学专业的数学分析课程的教材和参考资料。
全书共分成8章,主要包括:复数、复函数、作为映射的解析函数、复积分、级数与乘积展开、共形映射、狄利克雷问题、椭圆函数以及全局解析函数。此外,大部分章节后都有练习,便于学生掌握书中内容,其中加上“*”号的练习供学有余力的学生选做。本书假定读者具备大学二年级的数学基础,可作为高等院校高年级本科生以及研究生的教材和参考书。
本书以高等学校数学类专业教学指导委员会 会议精神为指导,为适应新时期教学改革与专业课程建设的需要,结合应用型普通本科院校相关专业教学特点进行编写。 全书分为上、下两册。上册内容包括:实数集与函数,数列极限,函数极限,连续函数,导数与微分,微分中值定理及其应用,不定积分,定积分,定积分的应用,反常积分等。附录有微积分学简史、希腊字母简表。书内各节后均配有相应的习题,书末附有部分习题答案与提示。 本书体系完备、选材恰当、重点突出、难度适宜、例题习题丰富。可作为应用型普通高等院校数学与统计学专业的数学分析课程的教材和参考资料。