数学分析是大学数学系的必修课,也是理工科高等数学的主要组成部分,更是研究生考试的必考内容。关于数学分析,富盛名习题,莫过于前苏联数学家,鲍里斯帕夫罗维奇 吉米多维奇编写的《数学分析习题集》。但是在相当长的一段时间之内,这套书只有题目,并无标准解法,直到20世纪八十年代初由我国著名数学家费定晖,周学圣等人将其全部解出,并且反复演算,终集结成册,由山东科学技术出版社出版,这就是在数学界大名鼎鼎的《1.Б.П.吉米多维奇数学分析习题集》。从《吉米多维奇数学分析习题集》到《吉米多维奇数学分析习题集题解》虽然两字之差,但是包含了一代数学大师们无数的心血。 直至1977年吉米多维奇去世,全套题集共计4462道,由浅入深的涵盖了数学分析题目的全部变化形式,部分习题难度很大,因此无论是自学、提高还是考研,这本书
本书是为报考数学类专业硕士研究生的本科学生编写的。按照数学分析的数学大纲要求,强调学生的综合能力,这个综合能力表现在两个方面:一是对一个具体学科的数学理论的归纳能力,即日用百货基本问题是什么,基本思想是什么,基本方法有哪些。二是灵活运用相关理论和方法解决某一个具体的数学问题,熟练地运用数学工具。本书分为六章:一元函数的极限与连续、一元函数微分学、一元函数积分学、多元函数微分学、多元函数积分学、无穷级数与广义积分。其内容顺序与通常教材的顺序基本一致。每节附有一定的练习题,以便读者自己检验学习的效果。
本书是大学数学的内容、方法与技巧丛书之一,对常微分方程的主要内容、基本方法与常用技巧进行了全面的讨论与分析,用大量的例题对所讨论的内容与方法作了演示与论证。全书的内容包括初等积分法、基本定理、线性微分方程、线性微分方程组、定性与稳定性概念及一阶偏微分方程。本书用简明易懂、通俗流畅的语言深人浅出地诠释概念、解析疑难、演绎方法与投巧,帮助读者理解与熟悉常微分方程的基本概念与理论,培养读者运用常微分方程方法分析问题与解决问题的能力,本书与教材同步,在方法与技巧上略有拓宽与提高,是大学生、工程技术人员与经济分析人员的、读之有益的一本好书。
本书根据面向21世纪课程教材复旦大学编《数学分析》(第二版)的教学内容编写。每章的内容分为三部分,分别是知识要点,经典例题分析和习题全解。知识要点部分对本章的内容高度概括,指出该章的知识要点,学习难点,以及读者在学习时应该掌握的学习内容。典型例题部分精选了部分能体现本章重点内容的,并且具有代表性的题目进行分析与解答,读者通过对这些题目的阅读,可以体会到不同的解题方法,拓宽自己的解题思路。习题全解部分将教材中的习题尽可能详细的做了解答,供读者在学习教材的过程中参考。
本书是“高等教育百门精品课程教材建设计划”(此计划作为整体已列入新闻出版总署“十五”国家重点图书规划)研究成果之一,是与普通高等教育“十五”*规划教材《工科数:学分析基础》(第二版)相配套的教学辅导书和参考书。 本书采用问与答的形式,解答了编者根据教学基本要求及长期的教学积累所整理和提炼出来的226个高等数学中的常见问题。本书共有七章,内容包括:函数、极限、连续,一元函数微分学及其应用,一元函数积分学及其应用,无穷级数,多元函数微分学及其应用,多元函数积分学及其应用,常微分方程以及附录:向量代数与空间解析几何。 本书可供学习高等数学的读者作为学习辅导书,也可供有关教师作为教学参考书,还可供报考硕士研究生的读者作为复习参考之用。
本书共分七章:绪论,初等积分法,线性方程组与方程,常系数线性微分方程与方程组,一般理论,稳定性初步,一阶偏微分方程。为了巩固所学知识,每章均配有一定量的习题,书后附有部分习题答案与提示。 本书可作为高等院校数学系本科学生的教材,也可供工科学生及工程技术人员参考。
本书是对华东师范大学数学系所编写的、高等教育出版社出版的《数学分析》(第三版)下册全部习题的详解。为便于学生学习,在每章的习题解答之前,增加了知识要点部分,此部分不是对该章主要内容的罗列,而是帮助学生从更高的观点上来理解该章的主要内容,分析理论作用,指出各概念,各定理的相互关联等,并指导解题方法,提示注意事项等。习题详解部分则周密、细致、规范,富有启发性,注意解题方法及技巧的运用,能给学生起到举一反三的作用。本书可供学生学习数学分析课程参考。
本书是学习数学分析课程的一本极好的指导书。本书的编写顺序与一般的数学教科书同步,本册内容包括级数、函数项级数与幂级数、傅里叶级数、多元函数微分学、隐函数定理及应用、向量函数微分学、重积分、曲线积分与曲面积分。读者可以通过学习它循序渐进地理解和掌握数学分析的概念和方法。本书在归纳内容、释疑解难的基础上,用大量、全面的例题为读者诠释概念、演绎技巧、举证方法,使读者可以更好地融会知识、理解概念、熟悉技巧和掌握方法。因此,读者有必要认真学习本书,通过它化教科书上的抽象概念为自己的切实有用的知识。 希望本书能成为你的良师益友,欢迎你选用本系列丛书。
《高等学校教材配套教辅6:数值分析习题与实验》囊括了有关数值分析的大量习题,习题共分六章,分别为非线性方程(组)的数值解法、线性方程组的数值解法、插值方法与数值逼近、数值积分、矩阵特征值与特征向量的计算、常微分方程初值问题的数值解法。后部分介绍了数值分析实验,具体包括实验原理、实验报告和参考框图。
常微分方程与偏微分方程和其他的数学学科有所不同,它们是更密切结合实际的学科,它们所反映的问题也是千差万别、五花八门的·所用的研究方法更没有统一的工具和格式,而要具体问题 具体分析,有时需要综合运用各种数学知识(如微积分、线性代数、复变函数、泛函分析和拓扑!学等)才能获得满意的结果.随着时代的进步、电脑的发展,微分方程的内容也}=『益丰富,它们涉及的领域更广泛、更深刻.可以这样说,近代先进科学技术的发展都已离不开微分方程了.作为大学的基础课程之一,常微分方程与偏微分方程是继微积分之后的重要基础课,虽然已有较好的教材,但是还有未涉及到的内容,为了使学生能更多地接触不同内容、不同风格和不同处理方法的常微分方程与偏微分方程教材,也为了使常微分方程和偏微分方程更好地结合,我们新编了这本“常微
本书是以作者多年来为天津大学非数学类专业博士生讲授非线性数学课程的讲义为基础编写而成,内容包括:空间结构与映射、非线性泛函分析和现代变分法的基础、非线性动力系统基础知识、分岔与奇异性理论以及混沌和分形的基础知识。 本书注重相关概念和理论之间的联系,保持了较严谨的数学体系,将学习非线性理论基础知识与提高现代数学修养这两个目的有机结合,可供高等院校非数学类专业博士生或对数学要求较高的硕士生选用部分或全部内容作为教材或教学参考书,也可供有关教师或科技工作者参考。
本书是“21世纪高职高专数学系列教”这一,内容分为两章:章,傅里叶变换;第二章,拉普拉斯变换。书后附有傅里叶变换简表,拉普拉斯等变换简表和习题答案与解答,便于读者查阅。 本书可作为高职专数学教学用书,也可供高等师范专科学校非数学专业高数教学选用。
这本由孙雨雷和冯君淑主编的《数值分析 第五版 同步辅导及习题全解(新版)》是为了配合清华大学出版社出版的、李庆扬、王能超、易大义主编的《数值分析》(第五版)教材而编写的配套辅导书。 本书共九章,分别介绍数值分析与科学计算引论、插值法、函数逼近与快速傅里叶变换、数值积分与数值微分、解线性方程组的直接方法、解线性方程组的迭代法、非线性方程与方程组的数值解法、矩阵特征值计算、常微分方程初值问题数值解法。全书按教材内容,对各章的重点、难点做了较深刻的分析。针对各章节全部习题给出详细解题过程,并附以知识点窍和逻辑推理,思路清晰、逻辑性强,循序渐进地帮助读者分析并解决问题,各章还附有典型例题与解题技巧,以及历年考研真题评析。 《数值分析 第五版 同步辅导及习题全解(新版)》可作为工科各专业、本科
本书系统地总结了《数学分析》的基本知识、基本理论、基本方法和解题技巧,收集了大量的具有代表性的题目(其中大部分题目是来自于近几年一些高校的研究生入学试题),由浅入深地介绍了《数学分析》的解题思路和解题方法,在解题过程中启发读者进而打开思路并掌握技巧,使学生能够更好地融汇知识、理解概念和掌握方法,以提高学生分析问题和解决问题的能力。 本书包括:极限与连续、一元函数微分学、一元函数积分学、级数等8章内容。