本书是 十二五 普通高等教育本科*规划教材。内容包括实数集与函数、数列极限、函数极限、函数的连续性、导数和微分、微分中值定理及其应用、 实数的完备性、不定积分、定积分、定积分的应用、反常积分,附录为微积分学简史、实数理论和不定积分表。 本次修订是在第四版的基础上对一些内容进行适当调整,使该书逻辑性更合理些,并适当补充数字资源。第五版仍旧保持前四版 内容选取适当,深入浅出,易教易学,可读性强 的特点。 本书可作为高等学校数学和其它相关专业的教材使用。
本书是《普林斯顿 读本》系列图书的第二本,该套书的论述风格友好、平易近人,通过作者与读者之间的互动对话和相关示例非常清晰地阐明了数学概念,提供了命题和定量逻辑方面的知识,可以使读者精通自己的数学思路。本书讲解了学习实分析的基础内容,包括基本的数学与逻辑、实数、集合、拓扑、序列等.作者以通俗易懂且略带幽默的口吻讲述了两步式求解方法:首先展示如何回溯到求解问题的关键,之后说明如何严谨规范地写下解题过程。书中还给出了丰富的示例,帮助学生巩固所学知识。
本书是* 高等教育面向21世纪教学内容和课程体系改革计划 和* 理科基础人才培养基地创建优秀名牌课程数学分析 项目的成果,是面向21世纪课程教材。本书以复旦大学数学科学学院30多年中陆续出版的《数学分析》为基础,为适应数学教学改革的需要而编写的。作者结合了多年来教学实践的经验体会,从体系、内容、观点、方法和处理上,对教材作了有益的改革。本次修订适当补充了数字资源。 本书分上、下两册出版。 上册内容包括:集合与映射、数列极限、函数极限与连续函数、微分、微分中值定理及其应用、不定积分、定积分、反常积分八章。 下册内容包括:数项级数、函数项级数、Euclid空间上的拓扑、多元函数的微分学、重积分、曲线积分与曲面积分、含参变量积分、Fourier级数八章。 本书可以作为高等学校数学类专业数学分析课程的教科书,也可
本书是 十二五 普通高等教育本科*规划教材,普通高等教育十一五*规划教材和面向21世纪课程教材。内容包括数项级数、函数列与函数项级数、幂级数、傅里叶级数、多元函数的极限与连续、多元函数微分学、隐函数定理及其应用、含参量积分、曲线积分、重积分、曲面积分、向量函数的微分学等。本次修订是在第四版的基础上对一些内容进行适当调整,使教材逻辑性更合理,并适当补充数字资源。第五版仍旧保持前四版 内容选取适当,深入浅出,易教易学,可读性强 的特点。本书可作为高等学校数学和其它相关专业的教材使用。
本书是作者在莫斯科大学力学数学系多遍讲授数学分析课程的基础上写成的,自1981 年第1 版出版以来,到2015 年已经修订、增补至第7 版。作者加强了分析学、代数学和几何学等现代数学课程之间的联系,重点关注一般数学中*有本质意义的概念和方法,采用适当接近现代数学文献的语言进行叙述,在保持数学一般理论叙述严谨性的同时,也尽量体现数学在自然科学中的各种应用。全书共两卷,*卷内容包括:集合、逻辑符号的运用、实数理论、极限和连续性、一元函数微分学、积分、多元函数及其极限与连续性、多元函数微分学。本书观点较高,内容丰富新颖,所选习题极具特色,是教材理论部分的有益补充。本书可作为综合大学和师范大学数学、物理、力学及相关专业的教师和学生的教材或主要参考书,也可供工科大学应用数学专业的教师和学生参考使用。
本书系统介绍数学建模的理论及应用,作者将数学建模的过程归结为五个步骤(即“五步方法”),并贯穿全书各类问题的分析和讨论中。本书阐述了如何使用数学模型来解决实际问题,提出了在组建数学模型并且求解得到结论之后如何进行灵敏性和稳健性分析。此外,将数学建模方法与计算机的使用密切结合,不仅通过对每个问题的讨论给了很好的示范,而且配备了大量的习题。
本书是一本非常优秀的图论入门书,自从1972年出版版以来,深受广大读者的欢迎,不断再版,1996年已经出版了第四版。本书用浅显易懂的语言,大量的实例和练习介绍了图论的基本知识以及横贯和拟阵等一些比较艰深的组合数学知识,读来通俗易懂,引人入胜。书中包含了大量的图论应用实例,不管是对于数学专业的师生还是对于工程专业的科技工作者都有很大的吸引力。目次:引言;概念和离子;路和圈;树;平面性;图的着色;有向图;匹配,婚姻定理和Menger定理;拟阵。
变分学是数学分析的一个重要组成部分,是一门与其他数学分支密切联系、并有广泛应用的数学学科。近几十年来,变分学不论是在理论上还是在应用中都有了很大发展,与数学其他分支的联系也更加紧密,已经成为大学数学教育不可缺少的部分。 《变分学讲义》是作者在北京大学为高年级本科生和低年级研究生开设“变分学”课程所用的讲义。全书共二十讲,分为三大部分:部分(一到八讲)是经典变分学的基本内容,第二部分(九到十四讲)重点介绍直接方法及其理论基础,第三部分(十五到二十讲)是专题选讲。其材料的选取,内容的编排,问题与概念的表述,以及证明的分析与讲解均极具特色。 《变分学讲义》适用于数学及相关专业的本科生、研究生、教师以及研究人员,也可供工科、经济学、管理学等专业的教师和学生使用参考。
本书汇集了 数学分析 方面的问题和反例500 多个。全书共八章,内容有数列、函数微分、积分、级数、一致收敛、多元函数、重积分与参变量积分。每一章分为三部分: *部分提纲挈领地给出了该章的基本概念和主要结果; 第二部分是问题,包括解法; 第三部分是反例。 本书所选的问题和反例比较典型,难度适中,构思新颖,解法精巧,富有启发性。书中不少问题和反例直接选自国内外有关学者所做的工作。本书对正确理解 数学分析 的基本概念,掌握 数学分析 的基本理论和技巧很有好处。 本书可供大学、大专数学系师生、数学工作者参考。
本书介绍了近代偏微分方程的一些重要的结果与常用方法,广义函数与Sobolev空间,椭圆边值问题,能量方法,算子半群等内容,为提高读者的整体数学素质提供了必要的材料。本书适合于数学专业高年级本科生和研究生教材,也可供相关专业人事参考。
苏联著名数学家庞特里亚金院士为中学生专门撰写了一系列数学普及读物,旨在向广大读者介绍高等数学的重要概念和方法。这些书简明扼要, 根据中学生的认知和理解能力用不大的篇幅讲解相应数学领域的基础知识, 注重基本概念的联系和普遍性, 部分书还附有颇具启发性的例题或习题。庞特里亚金在书中展示了他惊人的数学直觉和驾驭公式的技巧, 注重学科发展史,看重理论框架而非繁琐计算。这一系列图书为广大读者提供了探索数学世界并培养数学思维的机会。本书是该系列图书中的一本,涵盖了中学所讲授的微积分初步的全部内容,包括导数的概念,多项式、三角函数、指数函数、对数函数等基本函数的导数,不定积分和定积分的概念,图形的面积及有限和的极限等基础知识。本书通俗易懂,在正文后另有庞特里亚金的短篇自传作为附录,供广大读者参考。
本书是* 高等教育面向21世纪教学内容和课程体系改革计划 和* 理科基础人才培养基地创建优秀名牌课程数学分析 项目的成果,是面向21世纪课程教材。本书以复旦大学数学科学学院30多年中陆续出版的《数学分析》为基础,为适应数学教学改革的需要而编写的。作者结合了多年来教学实践的经验体会,从体系、内容、观点、方法和处理上,对教材作了有益的改革。本次修订适当补充了数字资源。 本书分上、下两册出版。 上册内容包括:集合与映射、数列极限、函数极限与连续函数、微分、微分中值定理及其应用、不定积分、定积分、反常积分八章。 下册内容包括:数项级数、函数项级数、Euclid空间上的拓扑、多元函数的微分学、重积分、曲线积分与曲面积分、含参变量积分、Fourier级数八章。 本书可以作为高等学校数学类专业数学分析课程的教科书,也
《数值分析(第3版)》着重介绍适合于电子计算机上采用的数值计算方法及其理论,内容包括误差分析、非线性方程求根、线性代数方程组数值解法、多项式插值与函数逼近、数值积分与数值微分、常微分方程数值解法、偏微分方程数值解法等。 《数值分析(第3版)》内容覆盖了*工科研究生数学课程教学指导小组所制订的工科硕士生数值分析课程教学基本要求,同时还增加了一些工科专业所需要的内容,如机器数系、有理函数插值、振荡函数积分等。书中对各种计算方法的构造思想都作了较详细的阐述,对稳定性、收敛性、误差估计以及算法的优缺点等也作了适当的讨论。 《数值分析(第3版)》还挑选了部分东南大学工科研究生结合各自专业自选课题的计算实习,以此作为《数值分析(第3版)》各章的应用实例。 《数值分析(第3版)》可作
本书是在第一版基础上修订而成的,在保持了第一版的简明扼要、论述清晰的内容体系和风格基础上,大幅度增加了泛函分析在各个领域中应用的例子. 全书共 4 章,包括泛函分析基础、局部凸空间、算子理论与算子代数初步、Banach 空间的微分学与拓扑度. 书中列举了大量泛函分析在复 分析、优化理论、偏微分方程、最优控制等领域的应用实例. 本书尽力以 一个适当的基础知识为起点,在整体内容上留给教师授课更多的自主空间, 留给学生学习更多的思考空间. 书中每章都给出了相应的参考书目供读者阅读,并精心选配了大量习题作为练习和正文的补充.
本书是供综合性大学和师范院校数学类各专业本科一、二年级学生学习数学分析课程的一部教材,分上、中、下三册。本册为下册,讲授多元函数的数学分析理论,内容包括多元函数的极限和连续性、多元函数微分学及其应用、含参变量的积分、多元函数积分学及其应用、场论初步、微分形式和斯托克斯公式等。
本书是《圆锥曲线习题集》的下册第1卷,内收有关椭圆的命题500道,抛物线的命题200道,双曲线的命题200边,综合命题100道,另有圆和直线的命题300道,全书合计1 300道,绝大部分是首次发表. 1 300道命题都是证明题,全部附图.全书分成5章45节,有些命题可供专题研究. 本书可作为大专院校师生和中学数学教师的参考用书,也可作为数学爱好者的补充读物.
本书将微积分经典内容进行拓展与延伸,力求反映当代数学的发展趋势,为此引入了混艳、分数阶傅里叶变换与小披变换等内容。与传统的数学分析教材不同,本书设置了系列探索类问题,目的是培养学生的开放式思维和独立思考问题的能力,根据信息化背景下对人才的要求,本书内容与计算机和信息技术相结合,增加了非线性方程数值方法、函数多项式插值逼近及外推算法、数值相分、非线性数值优化初步以及常微分方程数值求解等内容。《BR》 全书分上、下两册,本书为上册,内容包括:数列极限、函数极限与连续、函数的导数Taylor公式与函数插值逼近、不定积分、函数的Riemann积分与Lebesgue积分初步、定积分的应用、广义积分、数项级数、函数序列与函数项级数。
本书共有六章 , 分别为 : 线性半序空间 (K 空间 ),K 空间的分解与并合 ,K 空间元素的积分表示 ,K 空间的扩展 , 正则 K 空间 , 具有度量函数的 K 空间及赋范 K 空间 。 书中配有相关练习题以供读者学习理解 。
The present English edition is not a mere translation of the German original. Many new problems have been added and there are also other changes, mostly minor. Yet all the alterations amount to less than ten percent of the text. We intended to keep intact the general plan and the original flavor of the work. Thus we have not introduced any essentially new subject matter, although the mathematical fashion has greatly changed since 1024. We have restricted ours'elves to supplementing the topics originally chosen.
《俄罗斯数学教材选译·“十一五”国家重点图书:数学分析原理(第2卷)(第9版)》是г.м.菲赫金哥尔茨继《微积分学教程》三卷本后的又一部关于数学分析的经典著作,是作者总结多年教学经验编写而成的。 《俄罗斯数学教材选译·“十一五”国家重点图书:数学分析原理(第2卷)(第9版)》针对大学数学系一二年级的分析课程,因此分两卷出版。卷内容包括:实数、一元函数、极限论、一元连续函数、一元函数的微分法、微分学的基本定理、应用导数来研究函数、多元函数、多元函数的微分学、微积分的几何应用和力学应用,书中专列一章讲述数学分析基本观念发展简史;第二卷内容包括:数项级数、函数序列及函数级数、反常积分、带参变量的积分、隐函数和函数行列式、线积分、二重积分、曲面面积和面积分、三重积分、傅里叶级数等,书后
本书是一部现代数学名著。自20世纪70年代面世以来,一直受到西方学术界、教育界的广泛推崇,被许多知名大学指定为教材。相比于同类书籍,它的特点在于: 选取的论据更适子教学使用。 论证详尽,可读性更强。 习题丰富,覆盖各个方面、各级难度。 可根据教学需要选用不同章节。