Zygmund教授的这部著作1935年于波兰华沙首次出版时,便在学术界确立了其典范地位。版虽然对细节问题没有展开详尽讨论,但对当时的主要研究成果都给予了简要说明。1959年,大学出版社分两卷出版了该书第2版,书中加进了自版以来在三角级数。傅里叶级数以及纯数学各相关分支中的研究成果,对原书做了重大扩充。而第3版是将第2版的两卷合在一起,芝加哥大学数学系主任Robert Fefferman还特意为其作序,介绍作者的生平轶事、对数学分析的贡献以及本书的学术价值。
本书系统地介绍了泛函分析的基础知识。全书共分五章:第1章,距离空间与赋范空间;第2章,有界线性算子;第3章,Hilbert空间;第4章,有界线性算子的谱;第5章,拓扑线性空间。本书在选材上注重少而精,强调基础性。在结构安排上,由浅入深,循序渐进,系统性和逻辑性强。在叙述表达上,力求严谨简洁,清晰易读,能够简化的证明,在保持书稿结构严谨的前提下尽量予以简化,便于教学和学生自习。本书配备了较多的习题,以备选用。本书的末尾对大部分习题给出了提示或解答要点,供读者参考。本书的第5章介绍了拓扑线性空间的基本概念,这一章的内容不是本科生教材必须包含的内容,可以作为有兴趣的读者参考。本书可以作为综合性大学,理工科大学和高等师范院校的数学各专业或其他学科部分专业本科生的教材或参考书,也可以供研究生、相关教师