本书内容简介:This book is an outgrowth of a course which I gave atOrsay duringthe academic year 1 966.67 MY purpose in those lectureswas to pre-sent some of the required background and at the sametime clarify theessential unity that ests between several relatedareas of analysis.These areas are:the estence and boundedness ofsingular integral op-erators;the boundary behavior of harmonicfunctions;and differentia-bility properties of functions of severalvariables.AS such the moncore of these topics may be said torepresent one of the central develop-ments in n.dimensional Fourieranalysis during the last twenty years,and it can be expected tohave equal influence in the future.These pos.
本书的内容主要包括:密度泛函理论(Densityfunctionaltheory,DFT)的基本概念,以及如何使用DFT方法对工程实际问题进行建模模拟和计算。内容包括:何谓密度泛函理论(DFT)、对于简单固体的DFT计算、DFT计算中的基本要素、固体表面的DFT计算、DFT计算振动频率、使用过渡态理论计算化学过程的速率、基于从头算动力学的平衡相图、电子结构和磁性、从头算分子动力学、在"标准"计算之外的精度和方法。
Sincethepublicationofmylecturenotes,FunctionalDifferentialEquationsintheAppliedMathematicalSciencesseries,manynewdevelopmentshaveoccurred.Asaconsequence,itwasdecidednottomakeafewcorrectionsandadditionsforasecondeditionofthosenotes,buttopresentamoreprehensivetheory.Thepresentworkattemptstoconsolidatethoseelementsofthetheorywhichhavestabilizedandalsotoincluderecentdirectionsofresearch.
《Haskell函数式编程基础:原书第3版》是一本非常的Haskell函数式程序设计的入门书,依次介绍函数式程序设计的基本概念、编译器和解释器、函数的各种定义方式、简单程序的构造、多态和高阶函数、数组和列表的结构化数据、列表上的原始递归和推理、输入输出I/O的控制处理、类型检测方法、代数数据类型、抽象数据类型、惰性计算等内容。《Haskell函数式编程基础:原书第3版》包含大量的实例和习题,注重程序测试、程序证明和问题求解,易读易学。《Haskell函数式编程基础:原书第3版》循序渐进,从基本的函数式程序设计直至专题,让读者对Haskell的学习不断深入。
本书是复分析领域近年来产生了广泛影响的一本著作。作者独辟蹊径,用丰富的图例展示各种概念、定理和证明思路,十分便于读者理解,充分揭示了复分析的数学美,书中讲述的内容有作为变换看的复函数、默比乌斯变换、微分学、非欧几何学、环绕数、复积分、柯西公式、向量场、调和函数等。 本书可作为大学本科生或研究生的复分析课程教材或参考书。
戴嘉尊编著的《微分方程数值解法(第2版21世纪高等学校)》包括常微分方程数值解法、抛物型方程的差分方法、椭圆型方程的差分方法、双曲型方程的差分方法、非线性双曲型守恒律方程的差分方法、有限元法简介等共6章,每章后面附有数量的习题供练习之用。《微分方程数值解法(第2版21世纪高等学校)》适合于数学类本科生“微分方程数值解法”课程教学之用,也适用于工科研究生及计算数学与应用数学教学与科研人员,并可供有关工程技术人员参考。
本书是一本内容十分翔实的实分析。它包含集论,点集拓扑。测度与积分,Lebesgue函数空间,Banach空间与Hilbert空间,连续函数空间,广义函数与弱导数,Sobolev空间与Sobolev嵌入定理等;同时还包含 Lebesgue微分定理,Stone-Weierstrass逼近定理,Ascoli—Arzela定理, Calderon—Zygmund分解定理,Fefferman—Stein定理。Marcinkiewlcz插定理等实分析中有用的内容。 本书内容由浅入深。读者具有扎实的数学分析知识基础便可学习本书,学完本书的读者将具备学习分析所需要的实变与泛函(不包括算子理论)的准备知识和训练。
赵爱民和李美丽等编著的《微分方程基本理论》是在作者多年主讲研究生“微分方程基本理论”课程讲稿的基础上整理而成的。主要内容包括绪论(解的存在性、性及对初值与参数的光滑依赖性)、边值问题和Sturm比较理论、稳定性理论基础、定性理论基础、平面分支理论初步和算子半群与发展方程理论基础等,绝大部分章节都配有适量且难易兼顾的习题。本书以现代数学观点介绍微分方程的经典理论,同时简洁介绍了分支理论和发展方程的新方法和新进展。 《微分方程基本理论》可作为高等院校数学专业高年级本科生和研究生的常微分方程现代理论专业课程的和教师的参考书,也可供相关专业的科研人员参考。
本卷由华罗庚先生的著作《从单位圆谈起》以及一些关于多复变函数论等方面的论文组成。 《华罗庚文集:多复变函数论卷II》适于科研院所及高等学校数学系师生与数学工作者阅读。
本书是复分析领域近年来产生了广泛影响的一本著作。作者独辟蹊径,用丰富的图例展示各种概念、定理和证明思路,十分便于读者理解,充分揭示了复分析的数学美,书中讲述的内容有作为变换看的复函数、默比乌斯变换、微分学、非欧几何学、环绕数、复积分、柯西公式、向量场、调和函数等。 本书可作为大学本科生或研究生的复分析课程教材或参考书。
This book discusses the theory of a growth curve model (GCM) with particular emphasis on tatistical diagnostics, which is mainly based on recent work on diagnostics made by the authors and their collaborators. This book is intended for researchers who are working in the area of theoretical studies related to the GCM as well as multivariate statistical diagnostics, and for applied statisticians working in application of the GCM to practical areas.
本书共分6章,主要涉及分数阶偏微分方程的理论分析以及数值计算。章着重介绍分数阶导数的由来以及一些分数阶偏微分方程的物理背景;第2章介绍Riemann-Liouville等分数阶导数以及分数阶Sobolev空间、交换子估计等常用的工具;第3章从理论的角度讨论一些重要的偏微分方程;从第4章开始重点讨论分数阶偏微分方程的数值计算,介绍了有限差分法、级数逼近法(主要是Adomian分解和变分迭代法)、有限元法以及谱方法、无网格法等计算方法。本书涵盖了该领域的一些前沿结果以及作者目前的一些研究结果。 本书可供数学专业、应用数学专业和计算数学专业的高年级学生、研究生、教师以及相关的科技工作者阅读、参考。
临界非线性问题,又称极限非线性问题,是数学物理中的一类现象,刻画这类现象的偏微分方程所对应的变分泛函不满足全局紧性条件,或者说处在紧性条件的边缘,这样,经典的变分法便不能用于解决这些问题,而几何、物理中许多著名问题正处于这种境况。
刘培杰数学工作室编的《柯西函数方程--从一道上海交大自主招生的试题谈起/数学中的小问题大定理丛书》从一道上海交大自主招生试题谈起,讲授了柯西函数方程,及由此衍生的诸多问题。本书透过柯西函数方程,向读者勾勒了这道自主招生试题的全貌,指出了大学自主招生选取题目的背景及深厚内涵,考察学生的数学思维方向等,展示了函数方程在中学数学思想中的重要性。 本书适合于高中生、大学生以及数学爱好者参考阅读。