《特殊函数概论》是著名学者王竹溪先生的著作,书中系统地讲述了一些主要的特殊函数,如超几何函数、勒让德函数、合流超几何函数、贝塞耳函数、椭圆函数、椭球谐函数、马丢(Mathieu)函数。原著书中有360多道习题,习题数目巨大,且难度很高,如果单由读者去自行解答,会给读者带来很大的困难和困惑。吴崇试教授根据书中内容,总结书中习题的解法,系统的编写了这一本一本配套《特殊函数概论》的习题解答书,书中不仅全面解答了原著中的所有习题,还对原著中存在的很多错误进行了纠正。
本书强调严格性和基础性, 书中的材料从源头——数系的结构及集合论开始, 然后引向分析的基础(极限、级数、连续、微分、Riemann积分等), 再进入幂级数、多元微分学以及Fourier分析, 最后到达Lebesgue积分, 这些材料几乎完全是以具体的实直线和欧几里得空间为背景的。书中还包括关于数理逻辑和十进制系统的两个附录.课程的材料与习题紧密结合, 的是使学生能动地学习课程的材料, 并且进行严格的思考和严密的书面表达的实践。 本书适合已学过微积分的高年级本科生和研究生学习。
本书涵盖非线性规划的主要内容,包括无约束优化、凸优化、拉格朗日乘子理论和算法、对偶理论及方法等,包含了大量的实际应用案例.%26nbsp;本书从无约束优化问题入手,通过直观分析和严格证明给出了无约
《Haskell函数式编程基础:原书第3版》是一本非常的Haskell函数式程序设计的入门书,依次介绍函数式程序设计的基本概念、编译器和解释器、函数的各种定义方式、简单程序的构造、多态和高阶函数、数组和列表的结构化数据、列表上的原始递归和推理、输入输出I/O的控制处理、类型检测方法、代数数据类型、抽象数据类型、惰性计算等内容。《Haskell函数式编程基础:原书第3版》包含大量的实例和习题,注重程序测试、程序证明和问题求解,易读易学。《Haskell函数式编程基础:原书第3版》循序渐进,从基本的函数式程序设计直至专题,让读者对Haskell的学习不断深入。
本书讲述了复变函数的经典理论。作者用易于理解的方式严密介绍基础理论,强调几何观点,避免了一些拓扑学难点。书中首先从拓扑上较简单的情形论证了柯西积分公式,并引出连续可微函数的基本性质。然后阐述共形映射、解析延拓、黎曼映射定理、黎曼面及其结构,以及闭黎曼面上的解析函数等。书中包含大量的图示和丰富的例子,并附有习题,可以帮助读者增强对课程的理解。 本书可作为高等院校理工科专业复分析的入门教材,也可作为更高级学习研究的参考书
本书讲述了复变函数的经典理论。作者用易于理解的方式严密介绍基础理论,强调几何观点,避免了一些拓扑学难点。书中首先从拓扑上较简单的情形论证了柯西积分公式,并引出连续可微函数的基本性质。然后阐述共形映射、解析延拓、黎曼映射定理、黎曼面及其结构,以及闭黎曼面上的解析函数等。书中包含大量的图示和丰富的例子,并附有习题,可以帮助读者增强对课程的理解。 本书可作为高等院校理工科专业复分析的入门教材,也可作为更高级学习研究的参考书
本书是关于不连续动力系统动力学及其流转换性理论的专著、本专著提供了研究动力系统网络动力学及其行为复杂性的数学基础。书中介绍的不连续动力系统中的障碍向量场理论将改变人们在动力学系统中传统的思维方式;棱上动力学及其流转换复杂性理论是人们讨论动力学系统的低维网络通道吸引的数学基础;具有多值向量场的流对其边界、棱和顶点的跳跃流理论给小厂动力系统网络的“台球”理论的数学基础;动力系统的相互作用理论是动力系统网络中的普适性原理,并应用于动力系统同步。本书可作为应用数学、物理、力学及控制领域的师生及科研人员的参考书。
Thisbookisarecordofacourseonfunctionsofarealvariable,addressedtofirst-yeargraduatestudentsinmathematics,offeredintheacademicyear1985-86attheUniversityofTexasatAustin.Itconsistsessentiallyoftheday-by-daylecturenotesthatIpreparedforthecourse,paddedupwiththeexercisesthatIseemednevertohavethetimetoprepareinadvance;thestructureandcontentsofthecoursearepreservedfaithfully,withminorcosmeticchangeshereandthere.
传统的分布式应用不会切入微服务、快速数据及传感器网络的响应式世界。为了捕获这些应用的动态联系及依赖,我们需要使用另外一种方式来进行领域建模。由纯函数构成的领域模型是以一种更加自然的方式来反映一个响应式系统内的处理流程,同时它也直接映射到了相应的技术和模式,比如Akka、CQRS以及事件溯源。本书讲述了响应式系统中建立领域模型所需要的通用且可重用的技巧——首先介绍了函数式编程和响应式架构的相关概念,然后逐步地在领域建模中引入这些新的方法,同时本书提供了大量的案例,当在项目中应用这些概念时,可作为参考。
《偏微分方程理论与方法》(作者马天)是一部关于偏微分方程理论与方法的专著,本专著共有六章,章系统地介绍了经典的线性偏微分理论,第二章较详细地介绍了泛函分析的拓扑度理论,变分原理,线性算子半群理论及Banach空间上的动力系统理论,后四章主要是作者的工作,它们包括非线性椭圆及完全非线性椭圆边值问题存在性与正则性;退化椭圆及非负特征形式方程边值问题;非线性耗散型演化方程全局存在性及正则性;双曲型波方程及量子Hamilton系统以及耗散结构演化方程动力学,本书特点是强调数学的统一性、普适性以及简单性,同时也强调方程与自然的联系。《偏微分方程理论与方法》适合于从事数学、物理、大气海洋物理等方面的科研、教学人员及研究生,高年级本科生学习与参考。
本书俄文原为俄罗斯师范学院数学系的教学参考书.本书在内容安排上与传统的教材有很大的不同.本书共分为九章,作者从复变函数论的基础讲起,由浅入深,并在后两章中分别讲述了奇点、复变函数论在代数和分析上的应用以及保角映像、复变函数论在物理问题中的应用等.
《椭圆函数与模函数:从一道美国加州大学洛杉矶分校(UCLA)博士资格考题谈起》详细介绍了椭圆函数以及模函数的相关知识。全书共分为三章,分别为:椭圆函数、模函数、椭圆函数与算术学。《椭圆函数与模函数:从一道美国加州大学洛杉矶分校(UCLA)博士资格考题谈起》可供从事这一数学分支或相关学科的数学工作者、大学生以及数学爱好者研读。
ThethirdchapterpresentstheWeierstrassformulaandtheWeierstrasspreparatiotheoremwithapplicationstotheringofconvergentpowerseries.Itisshowthatthisringisafactorization,aNoetherian,andaHenselring.Furthermoreweindicatehowtheobtainedalgebraictheoremscabeappliedtothelocalinvestigatioofanalyticsets.Oneachievesdeepresultsithisconnectiobyusingsheaftheory,thebasicconceptsofwhicharediscussedithefourthchapter.IChapterVweintroduceplexmanifoldsandgiveseveralexamples.WealsoexamihedifferentclosuresofCandtheeffectsofmodificationsoplexmanifolds.
《椭圆函数与模函数:从一道美国加州大学洛杉矶分校(UCLA)博士资格考题谈起》详细介绍了椭圆函数以及模函数的相关知识。全书共分为三章,分别为:椭圆函数、模函数、椭圆函数与算术学。《椭圆函数与模函数:从一道美国加州大学洛杉矶分校(UCLA)博士资格考题谈起》可供从事这一数学分支或相关学科的数学工作者、大学生以及数学爱好者研读。
本书共分6章,主要涉及分数阶偏微分方程的理论分析以及数值计算。章着重介绍分数阶导数的由来以及一些分数阶偏微分方程的物理背景;第2章介绍Riemann-Liouville等分数阶导数以及分数阶Sobolev空间、交换子估计等常用的工具;第3章从理论的角度讨论一些重要的偏微分方程;从第4章开始重点讨论分数阶偏微分方程的数值计算,介绍了有限差分法、级数逼近法(主要是Adomian分解和变分迭代法)、有限元法以及谱方法、无网格法等计算方法。本书涵盖了该领域的一些前沿结果以及作者目前的一些研究结果。本书可供数学专业、应用数学专业和计算数学专业的高年级学生、研究生、教师以及相关的科技工作者阅读、参考。
本书共十六章.内容比较独立的是章与第十章.前者涉及解析函数理论中的部分基本问题,后者讨论了T函数及相关函数的幂级数展开,以及与之有关的级数与积分.其余各章大体可分为三部分.第二章到第五章围绕无穷级数而展开.内容包括:一、由解析函数Taylor展开而演绎出的各种变型;二、将常微分方程的幂级数解法用于求解已知函数的幂级数展开;三、卷积型级数的M6bius反演问题.第六章至第九章的中心是应用留数定理计算定积分,包括从一些简单的积分出发而演绎出许多新的积分.特别是,笔者综合已有的弓I理,提出了一个新的引理;并在此基础上,建立了计算含三角函数无穷积分的新方法.第十一章至第十六章讨论的是积分变换,介绍了有关Fourier变换和Laplace变换的一些理论问题.书中还介绍了Mellin变换,它与Fourier变换或Laplace变换密切相关,是处理某
本书旨在系统介绍非光滑优化理论与方法,全书共分为九章。章和第2章分别介绍凸集和凸函数的概念和有关性质;第3章引入凸函数的次微分,给出凸函数的极值条件与中值定理,并介绍次微分的性质和特殊凸函数的次微分表达式:第4章介绍局部Lipschitz函数的广义梯度,给出极大值函数广义Jacobi的计算;第5章阐述拟可微函数及拟微分的定义和性质;第6章针对凸规划、Lipschitz优化、拟可微优化给出性条件;第7章提出非光滑优化算法,包括下降方法、凸规划的次梯度法、凸规划的割平面法;第8章研究非光滑方程组及非线性互补问题;第9章介绍非光滑理论在控制论中的应用。本书可作为应用数学、运筹学与控制论及经济管理有关专业的高年级本科生或研究生,也可供相关专业的科研工作者参考。