本书对于积分给予了更深层次的介绍,总结了一些计算积分的常用方法和惯用技巧,叙述严谨、清晰、易懂。
《超越普里瓦洛夫:无穷乘积与它对解析函数的应用卷》对于无穷乘积及其对解析函数的应用给予了更深层次的介绍,《超越普里瓦洛夫:无穷乘积与它对解析函数的应用卷》总结了一些计算无穷乘积的常用方法和惯用技巧,叙述严谨、清晰、易懂。《超越普里瓦洛夫:无穷乘积与它对解析函数的应用卷》适合于高等院校数学与应用数学专业学生学习,也可供数学爱好者及教练员作为参考。
《极值与*值(下卷)》共分4章,介绍了如何运用冻结变量求极值,并阐述了极值与*值的相关应用,变量代换法是求函数极值与*值的方法之一,它可使问题简化,本文对此进行了探讨。《极值与*值(下卷)》适合中学师生及广大数学爱好者阅读学习。
本书对于复变函数给予了更深层次的介绍,总结了一些计算复变函数的常用方法和惯用技巧,叙述严谨、清晰、易懂。
《实变函数论新编/高等教育 十二五 规划教材》分为三章:章 集合论基础与点集初步 介绍了集合的概念、运算、势,讨论了Rn中集合的特殊点和特殊集及其性质;第二章 可测集与可测函数 ,介绍了可测集合与可测函数概念,讨论了各自具有的性质和相互关系,为改造积分定义作必要的准备;第三章 Lebesgue积分及其性质 定义了新积分,并讨论了新积分的性质。 鉴于学时所限,同时为了培养学生的自学能力,让学生通过学习 实变函数 更多体会数学创新方法,《实变函数论新编/高等教育 十二五 规划教材》提供了四个附录供学生自学,也便于教师概略性地选讲。 《实变函数论新编/高等教育 十二五 规划教材》的适用对象为数学与应用数学专业本、专科学生。因《实变函数论新编/高等教育 十二五 规划教材》注重挖掘 实变函数 中数学创新思维与初等数学或
本书从1978年陕西省中学生数学竞赛中的一道试题引出法雷数列. 全文主要介绍了利用法雷数列证明孙子定理、法雷序列的符号动力学、连分数和法雷表示、提升为非单调的圆映射、利用法雷数列证明一个积分不等式等问题。全书共七章,读者可全面地了解法雷级数在数学中以及在生产生活中的应用。 本书适合数学专业的本科生和研究生以及数学爱好者阅读和收藏。
本书是为大学非基础数学专业“实变函数与泛函分析”课程编写的教材。它的先修课程是数学分析或物理类的高等数学。全书共分6章,内容包括:集合,欧氏空间,Lebesgtle测度,Lebesgue可测函数,Lebesgue积分,测度空间,测度空间上的可测函数和积分,Lp空间,L2空间,卷积与Fourier变换,Hilbert空间理论,Hilbert空间上的有界线性算子,Banach空间,Banach空间上的有界线算子,Banach空间上的连续线性泛函、共轭空间与共轭算子,Banach空间的收敛性与紧致性。 本书在选材上注重了少而精,突出重点,并充分地反映了实变函数论与泛函分析中的核心内容;在内容的处理上,体现了由浅入深,循序渐进的原则;在介绍新理论的同时,既阐明它的背景,又介绍它与前面的的理论问的联系;在叙述表达上,严谨精练,清晰易读,便于教学与自学。为便于读者复习、巩固、理解
这是一本泛函分析教材,它系统地介绍线性算子理论的基础知识,算子半群以及连续函数空间上的Wirner测度和Hilbert空间上的Gauss测度。全书共分四章,Banach代数;无界算子;算子半群以及无穷维空间上的测度论。本书注意介绍泛函分析理论与数学其它分支的密切联系,给出丰富的例子和应用,以培养读者运用泛函分析方法解决问题的能力。 本书适用于理工科大学数学系、应用数学系高年级本科生、研究生阅读,并且可供一般的教学工作者、物理工作者和科学技术人员参考。
本书是作者在中国科学技术大学多年的教学实践中编写的。其内容包括:复数和平面点集、复变数函数、解析函数的积分表示、调和函数、解析函数的级数表示、留数及其应用、解析开拓、保形变换及其应用和拉氏变换九章。各章配备了较多的例题和习题,书末附有习题答案。 本书既注意引导读者用复数的方法处理问题,又随时指出复函和微积分中许多概念的异同点;在结构上既注意了它的完整性和系统性,又注意了它的使用性.具有由浅入深,逐渐深化,便于自学等特点可供高等院校理科各系(除数学系)及工科对复变函数要求较高的各系各专业作为教材或参考书。
本书从一道圣彼得堡数学竞赛试题谈起,详细介绍了毕卡大定理的相关知识及应用. 全书共分4章. 读者可以较全面地了解这类问题的实质,并且还可以认识到它在其位学科中的应用。 本书适合中学生、中学教师以及数学爱好者阅读参考。
本次修订是在第二版的基础上进行的,作者根据多年来的使用情况以及数学的近代发展,做了部分但是重要的修改。全书共11章:实变函数部分包括集合、点集、测度论、可测函数、积分论、微分与不定积分;泛函分析则主要涉及赋范空间、有界线性算子、泛函、内积空间、泛函延拓、一致有界性以及线性算子的谱分析理论等内容。 这次修订继续保持简明易学的风格,力图摆脱纯形式推演的论述方式,着重介绍实变函数与泛函分析的基本思想方法,尽量将枯燥的数学学术形态呈现为学生易于接受的教育形态;同时,补充了一些现代化的内容,如“分形”的介绍。 本书可作为高等院校数学类专业学生的教学用书,也可作为自学参考书。
本书是与《复变函数与积分变换》(第二版)(华中科技大学数学系编)配套的学习辅导书,全书共八章,主要内容为:复数与复变函数,解析函数,复变函数积分,解析函数的级数表示,留数及其应用。每章均由内容提要、典型例题分析、教材习题详解和自测题四部分组成,书末编有模拟试题。 本书注重分析解题思路,揭示解题规律,学生在学习本课程时普遍所遇到的重点、难点和考点,通过典型例题的解答予以重点分析;主教材习题详解与自测题则能使读者理解和巩固所学知识,构建自己的知识网络图以便在考试和以后的实际工作中灵活运用。本书读者对象可为高校在读学生、工科院校教师及青年科技工作者。
本书共八章:复数与复变函数,解析函数,复变函数的积分,解析函数的级数表示,留数及其应用,共形映射,以及积分变换。每章内容分为四节: 基本要求与内容提要 简要介绍每一章的基本要求和内容。 典型例题与解题方法 对应掌握的重点,以及学生在学习过程中普遍遇到的难点,通过典型例题的解答予以重点分析。 教材习题同步解析 详细解答主教材的全部习题。 自测题 精选了相当数量的有代表性的习题,供读者自测。 本书可作为高等学校理工科和其他非数学类专业的学生学习复变函数与积分变换的参考书。
本书是“大学数学的内容、方法与技巧丛书”之一,是学习泛函分析课程的一本很好的辅导书,本书编写顺序与一般的泛函分析教材同步,内容包括度量空间、线性有界算子、希尔伯特空间的几何学三大部分。本书在凝练知识、释疑解难的基础上,用大量、全面的例题对度量空间、赋范线性空间、线性算子与线性泛函、内积空间与各种算子及它们的谱分解的概念、关系、性质进行了演绎、推导与论证,将极大地有益于读者掌握泛函分析知识与方法。 希望本书能成为您的良师益友,欢迎您选用本系列丛书。
马立新编著的这本《复变函数论(第2版)》共6 章,主要内容包括复数与复变函数、解析函数、 复变函数的积分、级数、留数及其应用和共形映射等 ,较全面、 系统地介绍了复变函数的基础知识。内容处理上重点 突出、叙述 简明,每节末附有适量习题供读者选用,适合高等师 范院校数学 系及普通综合性大学数学系高年级学生使用。
这是一部泛函分析教材。它系统地介绍线性泛函分析的基础知识。全书共分四章: 度量空间;线性算子与线性泛函;广义函数与Coболев空间;以及紧算子与Fredholm算子。本书的主要特点是它侧重于分析若干基本概念和重要理论的来源和背景,强调培养读者运用泛函方法解决问题的能力,注意介绍泛函分析理论与数学其它分支的联系。书中包含丰富的例子与应用,对于掌握基础理论有很大帮助。 此书适用于理工科大学本科生与研究生阅读,并且可供一般的数学工作者、物理工作者、工程技术人员参考。 为便于读者学习,本次重印书末增加了习题补充提示和索引,以供读者参考。
本书是“大学数学的内容、方法与技巧丛书”之一,是学习泛函分析课程的一本很好的辅导书。本书编写顺序与一般的泛函分析教材同步,内容包括度量空间、线性有界算子、希尔伯特空间的几何学三大部分。本书在凝练知识、释疑解难的基础上,用大理、全面的例题对度量空间、赋范线性空间、线性算子与线性泛函、内积空间与各种算子及它们的谱分解的概念、关系、性质进行了演绎、推导与论证,将极大地有益于读者掌握泛函分析知识与方法。 希望本书能成为您的良师益友,欢迎您选用本书系列丛书。
本书遵循普通高等学校工科本科《复变函数课程教学基本要求》,按照新形势下教材改革精神,结合编者长期的教学改革实践编写而成,较全面、系统地介绍了复变函数的基础知识。 全书共7章,内容包括:复数与复变函数、解析函数、复变函数的积分、解析函数的级数展开、留数及其应用和共形映射等,后一章是复变函数实验,讨论怎样用计算机软件去解决复变函数中的问题。每章配有适量习题和补充题供读者选用,书末附有习题答案与提示。 本书可作为普通高等学校工科本科各专业的复变函数课程的教材,也可供工程技术人员、报考研究生的读者参考。
《实变函数(第三版)》是作者在多年教学经验的基础上撰写的一部实变函数教材,第二版在**版使用9年的基础上作了修订,第三版特别增加了部分习题参考答案与提示。《实变函数(第三版)》内容包括:集合与实数集、Lebesgue测度、可测函数、Lebesgue积分、微分和积分、Lp空间。每章后均附习题与例题,以便于读者学习和掌握实变函数论的基础知识。
本书是钟玉泉主编的《复变函数》(第2版)的配套教学用书,对本科数学类专业学习复变函数课程有指导的意义。为方便读者阅读,《复变函数学习指导书》按教材各章顺序对应编写,每章都包括以下三部分内容:重点、要求与例题,按照教材章节顺序,在概括本章内容重点与要求的同时全面系统地总结和归纳复变函数问题的基本类型,每种类型的基本方法,每种方法先概括要点,然后选择若干具有典型性、代表性和一定技巧性的例题,逐层剖析,分类讲解;习题解答提示,教材各章习题除简单、明显的外都分别给出解法或证明提示,包括解题要点,或解题思路分析,或指出解、证时应该利用的主要工具,而把细致的中间过程留给读者自己补充完成;类题或自我检查题,这部分题目是为读者检查自己掌握复变函数理论和方法的程度编排的。 《复变函数学习指导
本书内容经典,教材体系、内容安排、例题习题配置经过30多年的反复锤炼,已被高校教师广泛认可。本次修订将在保留原有特色和结构的前提下,作如下修改:在第三章 行波法与积分变换法 中增加一节 傅里叶变换与拉普拉斯变换简介 ,主要介绍两个变换的定义及几个重要性质;对第三版中的一些文字表述作进一步推敲,使修订后的版本更有利于教师教和学生学;对一些物理概念及物理解释的叙述力求做到更清晰、更丰富、更有吸引力。