《法兰西数学精品译丛:谱理论讲义(第2版)》是由J.迪斯米埃在20世纪70年代开设线性算子谱理论课程时手写油印的讲义翻译而来的在相当长的一段时期里,该讲义在法国被这一领域的所有学生认真反复阅读,也被教授这一课程的教师大量使用、在本书中,迪斯米埃以完整地陈述谱定理为核心目的,通过基本也是常用的一些例子让读者明白所引进的每一个概念、每一条定理,都是在后续内容中必不可少的,并娴熟地应用各种技巧对定理给出精确、简短而优雅的证明——这就是布尔巴基成员的作品。而本书中体系的严谨与清晰明了则是作者一贯的写作风格 《法兰西数学精品译丛:谱理论讲义(第2版)》可以作为研究生泛函分析基础课的教材,也可以作为大学本科高年级选修课教材,、对于非泛函方向的学生来说,《法兰西数学精品译丛:谱理论讲义(第2
《复变函数专题选讲》是复变函数专业基础内容的进一步发展,共分为9章,包含cauchy定理的推广、*模原理、整函数与亚纯函数、共形映射、解析开拓及riemann曲面初步、调和函数与dirichlet问题、 函数和b函数、椭圆函数、cauchy型积分。上列*后三项与复变函数的应用有密切联系,其他各项都是专业基础内容的进一步发展。它们在复变函数论的理论研究和应用中都有重要意义。 《复变函数专题选讲》可作为数学类高年级大学选修课及研究生必修课的参考书,也可供广大数学工作者和有关科研人员参考。
《超越普里瓦洛夫:无穷乘积与它对解析函数的应用卷》对于无穷乘积及其对解析函数的应用给予了更深层次的介绍,《超越普里瓦洛夫:无穷乘积与它对解析函数的应用卷》总结了一些计算无穷乘积的常用方法和惯用技巧,叙述严谨、清晰、易懂。《超越普里瓦洛夫:无穷乘积与它对解析函数的应用卷》适合于高等院校数学与应用数学专业学生学习,也可供数学爱好者及教练员作为参考。
《极值与*值(下卷)》共分4章,介绍了如何运用冻结变量求极值,并阐述了极值与*值的相关应用,变量代换法是求函数极值与*值的方法之一,它可使问题简化,本文对此进行了探讨。《极值与*值(下卷)》适合中学师生及广大数学爱好者阅读学习。
这本生动、简洁的书基于作者在莫斯科大学力学数学系的本科生课程讲义,涵盖了计算的一般理论的基本概念。《可计算函数》从可计算函数的定义和一个算法开始,讨论了可判定性、可数性、通用函数、编号系统及其性质、m-完全性、不动点定理、算术分层、oracle计算、不可判定性的度。作者还介绍了一些特殊的函数模型,如Turing机和递归函数。 《可计算函数》可供数学和计算机专业的本科生阅读,也可供所有希望学习计算的一般理论的基础知识的数学家和程序员使用。
本书对于复变函数给予了更深层次的介绍,总结了一些计算复变函数的常用方法和惯用技巧,叙述严谨、清晰、易懂。
《同调论(第2版)》是一部代数拓扑领域的入门级书籍,特别强调同调理论基础和应用。具备abelian群和点集拓扑的基本知识完全读懂这《同调论(第2版)》。章既讲述奇异同调的本质,又介绍一些重要的应用。这样,学生可以很好的抓住材料的本质。紧接着讲述了接着空间、有限cw复杂度、eilenberg-steenrod定理、上同调积、流形、庞加莱对偶和不动点理论。通书运用大量的例子和图表,让表述尽可能的清楚。以基本概念为核心,一些*的案例尽可能避免。《同调论(第2版)》终目标是作为本科生教程或者自学教程。在第二版中进行了大量的扩展,增加了新的一章,包括覆盖定理,以及许多练习。理论方法再次证明了如何运用提出问题的方式近而产生基础群及其性质。目次:奇异同调理论;映射的接着空间;eilenberg-steenrod定理;覆盖定理;乘积;流形和庞加莱对偶性;不
The implicit function theorem is. along with its close cousinthe inverse func- tion theorem, one of the most important, and oneof the oldest, paradigms in modcrn mathemarics. One can see thegerm of the idea for the implicir func tion theorem in the writingsof Isaac Newton (1642-1727), and Gottfried Leib-niz's (1646-1716)work cxplicitty contains an instance of implicitdifferentiation. Whilc Joseph Louis Lagrange (1736-1813) found a theorcm that isessentially a version of the inverse function theorem, ic wasAugustin-Louis Cauchy (1789-1857) who approached the implicitfunction theorem with mathematical rigor and it is he who isgencrally acknowledgcd as the discovcrer of the theorem. InChap-ter 2, we will give details of the contributions of Newton,Lagrange, and Cauchy to the development of the implicit functiontheorem.
《数林外传系列:凸函数与琴生不等式》将中学阶段的大量初等不等式进行了较系统的归类和介绍,阅读本书可以开拓读者在不等式方面的视野,提高对不等式的认知和解决同类问题的能力,《数林外传系列:凸函数与琴生不等式》适合中学数学教师和对不等式感兴趣的高中学生。 本书以凸函数与琴式不等式为纲,将中等数学中的二百多个有趣的不等式有序地组织起来,可以大大拓广高中学生、中学数学老师在不等式方面的视野,有利于提高高中学生在不等式方面的数学修养。而不等式是高校自主招生、高考、数学竞赛中不可缺少的内容。全书资料主要来源有两部分,一部分取自国外英文中等数学杂志,另一部分是作者自编的,取自英文中等数学杂志的题目的解答很多都由作者改写,目的是降低阅读目槛,使具有高一数学知识的学生能读懂全书。本书一个鲜
本书是一本常微分方程本科生教材,传统意义的微分方程是讲解求解微分方程解析解的特殊技巧,本书的特别之处在于首先将数学建模贯穿全书,然后以不同的方法进行解的表达,在解的裹达中,不仅仅限于解析解,主要以定性为主,通过斜率场、解的图像、相平面上的向量场及轨线等工具,到达对解的渐近行为的最好理解,最后以数值方法与计算机模拟为工具加深对解的行为的直觉理解.全书的图形演示课件可焱陆本书指明的课程网站下载.全书分5章,主要包括一阶微分方程、一阶二维微分方程组、二阶线性常系数徵分方程、一阶二维非线性方程组和一阶n维线性微分方程组.
《偏微分方程数值解法(第二版)》内容包括常微分方程两点边值问题的差分解法、椭圆型方程的差分解法、抛物型方程的差分解法、双曲型方程的差分解法和有限元方法简介。力求做到:(1)精选内容。重点介绍有限差分方法。(2)难点分散。对于差分方法,先从常微分方程两点边值问题出发,介绍差分方法的有关概念以及常用的分析技巧,然后将这些概念和技巧分别应用于椭圆型方程、抛物型方程和双曲型方程的数值求解。对于有限元方法,也先从常微分方程两点边值问题出发,介绍有限元方法的基本思想,再研究椭圆型方程的有限元解法。(3)强调会“用”各种数值方法。先举例示范,再要求学生模仿,*后到熟练掌握。书末的两个附录分别介绍有限Fourier级数法和Schrodinger方程的差分方法。
《数学解题与研究丛书:集合、函数与方程》是一部高中数学教学参考用书,共分为两部分:集合与逻辑、函数与方程,系统、详尽地阐述了高中数学解题技巧,有理论、有实践。《数学解题与研究丛书:集合、函数与方程》注重科学性、系统性和趣味性,全书共含50篇小文章,每篇文章各自独立成文,所以《数学解题与研究丛书:集合、函数与方程》可系统性地研读,也可有选择性地阅读。《数学解题与研究丛书:集合、函数与方程》可作为高三复习备考用书,也可供中学、大学师生及初等数学爱好者研读,或作为高中数学竞赛辅导资料和师范大学数学教材教法方面的教材。
本书详细而全面地介绍了初等函数的相关概念、研究方法及初等函数趣题,并详细介绍了初等函数的各种性质、函数题常用的解题方法及函数题的一题多解,供读者参考。
本书介绍了在计算机科学研究过程中所遇到的各种空间及其变换,空间有向量空间、仿射空间、欧几里得空间、二维射影平面和三维射影空间等;变换有线性变换、等距变换、仿射变换和摄影变换等。在等距变换中详细地讨论了三维空间中的刚体运动及其不同表示,给出了在各种表示下运动的计算方法;在射影变换中不仅讨论理二维、三维射影变换,也给出了三维射影到二维平面的射映,在射影变换中研究中,着重论述了空间几何元素的变形。书后附录介绍变换群和张量的概念。 本书重点介绍相关概念及其应用和计算方法,而不是理论分析。因此非常适合计算机科学、电子工程以及应用数学和计算数学专业的广大研究生与高年级本科生阅读,也可以作为相关领域学者的参考书。
本书共分十四章,章至第六章是实变函数的内容(上册),包括集合与点集、测度、可测函数与Lebesgue积分、Riemann-Stieltjcs积分和Lebesgue-Stieltjes积分等,并且对抽象测度和积分作了介绍;第七章至第十四章是泛函分析的内容(下册),包括距离空间与Banach空间、Hilbert空间、线性算子与线性泛函、全连续算子、自共轭算子等,并且对抽象函数与Banach代数、凸锥理论、广义函数作了介绍,每章末尾附有相当数量的习题。 本书把以上内容分为基本的、非基本的两个方面,对基本内容写得较为细致详尽,特别注意做到深人浅出、直观易懂;对非基本内容,标题前加了*号,供选读。 本书可作为综合性大学和师范学院数学系《实变函数》、《泛函分析》两门课的教材或教学参考书,也可供数学爱好者自学这两门课之用。
本书共分五章: 章论述非线性算子的一般性质,包括连续性、有界性、全连续性、可微性等,并给出了隐函数定理和反函数定理。 第二章建立拓扑度理论,不仅建立了重要的有限维空间连续映象Brouwer度和Banach空间全连 续场的Leray-Schauder度,而且论述了较常用的凝聚场的拓扑度和A-proper映象的广义拓扑度。 第三章将半序和拓扑度(不动点指数)相结合来研究非线性算子方程的正解,讨论了常用的凹算子和凸算子的正解及多解问题。 第四章主要证明强制半连续单调映象的满射性和强制多值极大单调映象的满射性。 第五章论述非线性问题中的变分方法,既包括古典的极值理论,也包括属于大范围变分学的Minim ax原理和Mountain Pass引理等。 书中包括了对于非线性积分方程、常微分方程以及二阶半线性椭圆型偏微分方程的应用。 本书可
实变与泛函是数学学科中重要的专业基础课程之一,它的独特思维方式和内容的深广性使得学生普遍感到学习困难,因此有必要编写诸如学习指导之类的教学辅导材料。 本书分为两大部分。部分是“实变与泛函的内容和习题”,由邱曙熙、邱旭勐负责编写 。该部分是参照已故厉则治教授的《实变与泛函》(厦门大学出版社,1990)一书编写的内容和习题解答,其中内容的章节号和定理排序与原书基本一致。厉教授的书将实变与泛函融为一体,具有鲜明的特色;不少读者反映该书对从事科研也颇具参考价值。第二部分是《实分析与泛函分析》(匡继昌编著,高等教育出版社,2002)一书的习题解答,由李毅轩负责编写。
《复变函数与积分变换(英文版)》是一本用于同名课程双语教学的英文教材,编者参考多本有关的经典原著英文教材,按照国家*对《复变函数与积分变换(英文版)》的基本要求,结合多年的教学实践编撰而成.内容分两部分,共8章。第1~6章为复变函数部分,包括complex numbers and functions of a complex variable(复数与复变函数),analytic functions(解析函数),complex integrals(复积分),series(级数),residues(留数),conformal mappings(保形映射)。第7章和第8章是积分变换部分,包括Fourier transform(傅里叶变换)和Laplace transform(拉普拉斯变换)。《复变函数与积分变换(英文版)》各章节都安排了足够量的例题,在每章后也安排了大量精选的习题,并按大纲的要求及难易程度分为A、B两类。
本书是引导学生对泛函分析深入学习、研究的入门书,通过一系列例题论述了线性基的维数;描述了准赋范线性空间与赋范线性空间之间的差异;以及判断赋范线性空间为内积空间的平行四边形法则;给出了赋范线性空间有限维与无限维差异方面的一个判定准则 . 我们还论述了具有不动点性质的各种典型拓扑空间;详细证明了开映射定理、 Banach 逆算子定理、共鸣定理和著名的闭值域定理;后,还深入研究了全连续(紧)算子谱理论的 Riesz-Schauder 理论 . 本书可作为理工科大学、师范大学、师范学院数学系学生的入门参考书,也可作为大学数学教师与数学工作者的参考书 .
本书是普通高等工科院校基础课规划教材之一,内容包括高等教育工科各专业所需要的复变函数和积分变换的基础知识。主要有复数与复变函数、解析函数、复变函数的积分、级数、留数、保角映射、傅里叶变换和拉普拉斯变换等。每章末附有小结和自测题,以便于读者自学时能够抓住重点和检查自己对本章学习的基本情况。书末附有习题答案和参考书目。 本书在编写过程中力求做到条理清楚、重点突出,注重解题方法的训练和思维能力的培养。本书可以作为高等教育工科各专业该课程的教材,亦可作为其他专业学习这门课程的教学参考书。本书使用学时建议为48~64学时。