本书共分9章,内容包括复数与复变函数、解析函数、复变函数的积分、复级数、留数、保形映射、傅里叶变换、拉普拉斯变换、Z变换。每章后边配有相关练习题。书末配有2个附录,分别是傅氏变换简表和拉氏变换简表。
本书共十六章.内容比较独立的是章与第十章.前者涉及解析函数理论中的部分基本问题,后者讨论了T函数及相关函数的幂级数展开,以及与之有关的级数与积分.其余各章大体可分为三部分. 第二章到第五章围绕无穷级数而展开.内容包括:一、由解析函数Taylor展开而演绎出的各种变型;二、将常微分方程的幂级数解法用于求解已知函数的幂级数展开;三、卷积型级数的M6bius反演问题. 第六章至第九章的中心是应用留数定理计算定积分,包括从一些简单的积分出发而演绎出许多新的积分.特别是,笔者综合已有的弓I理,提出了一个新的引理;并在此基础上,建立了计算含三角函数无穷积分的新方法. 第十一章至第十六章讨论的是积分变换,介绍了有关Fourier变换和Laplace变换的一些理论问题.书中还介绍了Mellin变换,它与Fourier变换或Laplace变换密切相
本书中附有“八大问题”供有兴趣的读者研究探讨。大学数学系的师生、中学数学教师和喜爱数学的高年级学生,均可读懂本书的绝大部分内容。本书是对“*值”、“曲线、曲面方程”、“解析法”等概念和方法进行深入发掘的结果,因此,对中学、大学的数学教学,有很高的参考价值。 本书通过建立多边形、组合图形和多面体的方程,实现对折边与组合图形进行解析研究的梦想。书中建立了很多的方程,给出了已知图形构建其*值方程和已知方程画出图形的一系列方法,并对方程给出了若干应用。
无
本书从数学学科的特色、人文欣赏的视野着手,运用通俗的语言、生动的例子介绍函数的数学文化内涵及其函数知识在现实世界中的广泛应用主要内容包括函数概念与函数图像常识及其美学欣赏、相遇比例函数、相遇增长函数、相遇周期函数的数学文化内涵欣赏及其实际应用。
本书详细而全面地介绍了初等函数的相关概念、研究方法及初等函数趣题,并详细介绍了初等函数的各种性质、函数题常用的解题方法及函数题的一题多解,供读者参考.
在科技计算中,多元函数逼近理论已得到广泛的应用,其理论和研究的发展遇着重要的实际意义。本书主要叙述多元函数逼近理论的发展,内容包括:线性算子的逼近原理、多元差值、多元QeobwB逼近、多元样条逼近、多元非线性逼近,其中包括了作者的许多科研成果。
本书是俄罗斯综合大学和高等技术学校使用的复变函数论教材。它基于前苏联著名数学家、科学家院院士拉夫连季耶夫的讲稿,由沙巴特补充整理,并经过多次修订,使内容更为合理,应用实例更为丰富,已成为该领域一本经典教材。 本书以共形映射为基本内容,把它作为工具,广泛应用于物理学、流体动力学、气体动力学、弹性力学和电气技术中实际问题的计算以及数学的其他分支。全书包括基本概念、共形映射、函数论的边值问题及其应用、共形映射的变分原理、函数论在分析上的应用、算子法及其应用、特殊函数等。 本书可供高等学校数学、物理、力学及相关专业的本科生、研究生、教师,以及相关领域的研究人员参考使用。
本书是一部介绍复流形理论的入门书籍。作者用尽可能简单的方法使读者熟悉多变量复分析中的重要分支和方法,所以避免出现比较抽象的概念,如,层、凝聚和高维上同调等,仅运用了基本方法幂级数、正则向量丛和一维上闭链。然而,解析集Remmert-Stein定理,正则向量丛中的截面空间有限定理以及Levi问题解这些深层次的都得到了完整的证明。每章的结束都有大量的例子和练习。具备实分析、代数、拓扑以及单变量理论知识就可以完全读懂这本书。本书可以作为学习多变量的入门教程,也是一本很好的参考书。 读者对象:本书适用于数学专业的广大师生。
《复分析导论(第1卷)·单复变函数(第4版)》文字叙述极具特色,素材丰富,内容包括全纯函数及其性质、解析延拓、几何理论的基础、解析方法、调和与次调和函数等。《复分析导论(第1卷)·单复变函数(第4版)》可供高等学校数学、物理、力学及相关专业的本科生、研究生、教师,以及相关领域的研究人员参考使用。 复分析是研究复函数,特别是亚纯函数和复解析函数的数学理论,其应用领域极为广泛,在其他数学分支和物理学中均起着重要的作用。 《复分析导论》(二卷本)根据作者在莫斯科大学讲授的讲义编写而成,分别涉及复分析必修课程和专业基础课的基本内容。《复分析导论(第1卷)·单复变函数(第4版)》是卷,给出了单复变函数理论的基本概念的完整叙述,并从一开始引入高维复分析中的许多重要思想,并通过单变函数的内容加以解释,为
本书共18章,分为3部分.第l部分为前7章,系统地介绍了单变量函数逼近论的基本内容,即赋范线性空间中逼近的一般理论,包括一致逼近、*逼近的定量理论、小平方逼近、有理逼近等重要内容.第8章到第13章为第2部分,主要讲述了单变量样条函数的基本理论,包括多项式样条的基本空间、8样条及其性质、样条函数的计算、对偶基和样条的零点、样条的插值与逼近等重要内容.后一部分共5章,主要介绍了多元多项式插值以及贯穿剖分上、规则剖分下的二元样条函数的基本性质及其应用. 本书可作为计算数学和应用数学专业的高年级本科生和研究生教材,亦可作为相关专业的师生及科技人员、工程技术人员的参考书.
本书是世界著名数学家A.H.柯尔莫戈洛夫院士在莫斯科大学数学力学系多年讲授泛函分析教程(曾称《数学分析Ⅲ》)的基础上编写的。它是关于泛函分析与实变函数论的精细问题的严格的系统阐述,书中反映了作者的教育思想,体现了作者丰富的教学经验与方法。内容包括:集合论初步,度量空间与拓扑空间,赋范线性空间与线性拓扑空间,线性泛函与线性算子,测度、可测函数、积分,勒贝格不定积分、微分论,可和函数空间,三角函数傅里叶变换,线性积分方程,线性空间微分学概要以及附录的巴拿赫代数。 本书适合数学、物理及相关专业的高年级本科生、研究生、高校教师和研究人员参考使用。
《多复变函数论》包含多复变函数研究中分析、层论与复几何这三个主要方面的主要研究成果与方法。较之国内外相应的多复变函数著作,本书的内容更全面,而且通过阅读本书,读者可以充分了解多复变函数与几何、拓扑、方程和实分析等相关分支的交叉关系。 《多复变函数论》的撰写尽可能地适于自学之用,主要读者对象为数学系高年级本科生、研究生与青年教师,同时也可供其他理工科专业本科生、研究生、青年教师及相关工程技术人员学习参考之用。
《多项式和多项式不等式(英文版)》是springer数学研究生教材(gtm)第161卷,主要介绍多项式和有理函数,重点论述代数多项式和三角多项式的特性,同时也介绍了多项式几何、正交多项式、切比雪夫和马可夫系、müntz系和müntz-type型稠密性定理,以及不等式用于多项式和有理函数等理论。其中有些内容较同类图书更加全面。目次:导论和基本特性;特殊多项式;切比雪夫和笛卡儿系;稠密性问题;基本不等式;müntz空间中的不等式;有理函数空间中的不等式。 读者对象:数学及相关专业研究生和科研人员。
内容简介:本书共分五章,详细地介绍了三角函数与迭代函数的相关概念、研究方法,并介绍了三角函数及复数,多项式与因式分解,迭代函数与函数方程的一些函数趣题的一题多解,供读者参考。 本书可作为大、中学生及初等数学爱好者学习初等函数时的参考用书。
《雅可比定理--从一道日本数学奥林匹克试题谈 起/数学中的小问题大定理丛书》编著者梅根、佩捷。 《雅可比定理--从一道日本数学奥林匹克试题谈起/数学中的小问题大定理丛书》是“数学中的小问 题大定理”之一,通过一道日本数学奥林匹克试题研 究讨论雅可比定理及其相关知识。 本书可供从事这一数学分支或相关学科的数学工 作者、大学生以及数学爱好者研读。
本书系统地论述了矢量分析、圆柱函数和球函数,内容计有矢量分析、Bessel函数、变型Bessel函数、球Bessel函数和Legendre函数5章,包含有正文、附录、典型数表和源程序,它具有矢量分析和圆柱函数以及球函数(公式、曲线、数表和程序)手册的特点。源程序在所附光盘中给出,其中具有互动式的计算圆柱函数和球函数范例程序,其执行文件可相当于“圆柱函数和球函数计算器”。 本书内容翔实简明,重点突出,叙述深入浅出;理论联系实际,注重基本理论、基本运算和数值计算技能;方便自学,易于掌握。 本书可作为数学基础补充,供理论物理、大气科学、微波理论与技术、电磁场工程等理工科大学相关专业教师和科技人员与研究生参考,以及作为本科生学习“数学物理方程”中有关特殊函数内容的辅助教材或课外补充读物。
本书主要针对近几年刚刚发展起来的一种新型混油同步方式修正函数投影同步展开研究目全书共9章回第1章介绍了混沌修正函数投影同步基本知识.第2章构建了一个Fang超混沌系统并分析其动力学行为.第3章研究了混沌系统同阶和降阶修正函数投影同步第4章基于单向搞合混沌同步原理,设计了两种混沌函数投影同步响应系统第5章研究了同结梅和异结构混沌系统的修正函数投影同步第6章研究了输人受限的混沌系统的修正函数投影同步第7章研究了混油系统的组合函数投影同步.第8章研究了以混沌系统作为复杂网络节点的复杂动态网络的修正函数投影同步第9章将混沌修正函数同步应用于保密通信,研究了基于错位函数投影同步的混沌保密通信。