本书共六章。第一章讲述实域内常微分方程理论的基本知识,包含:解的存在、唯一和对初值的连续相依性定理;动力体系的概念;积分线在常点附近的局部直性等。第二章讲述庞加莱(J.H.Poincare)和本迪克森(I.O.Bendikson)所创建的积分线在平面和锚圈面上的定性理论及其近代的发展。第三章讲述 维微分方程组的解的渐近性状和李雅普诺夫(A.M.Lyapunov)式稳定性的解析判定方法。第四章讲述n维微分方程组的研究。第五章讲述由苏联学者马尔科夫(A.A.Markov)引入作为度量空间自身变换的单参数群的一般动力体系的理论。第六章讲述具有不变测度的一般动力体系的度量理论。 本书适合高等院校师生及数学爱好者研读。
本书阐述了求解微积分的技巧,详细讲解了微积分基础、极限、连续、微分、导数的应用、积分、无穷级数、泰勒级数与幂级数等内容,旨在教会读者如何思考问题从而找到解题所需的知识点,着重训练大家自己解答问题的能力。 本书适用于大学低年级学生、高中高年级学生、想学习微积分的数学爱好者以及广大数学教师,即可作为教材、习题集,也可作为学习指南,同时还有利于教师备课。
这是当今偏微分方程(PDE)教材的第二版。它给出了PDE理论学习中现代技术的总览,特别注重非线性方程。《偏微分方程(第二版)(英文版)》内容广泛、阐述清晰,已经是PDE方面经典的研究生教材。在本版中,作者做了大量改动,包括 ·新增非线性波动方程的一章 ·超过80个新习题 ·许多新的小节 ·大大扩充了参考文献
这是当今偏微分方程(PDE)教材的第二版。它给出了PDE理论学习中现代技术的总览,特别注重非线性方程。《偏微分方程(第二版)(英文版)》内容广泛、阐述清晰,已经是PDE方面经典的研究生教材。在本版中,作者做了大量改动,包括 ·新增非线性波动方程的一章 ·超过80个新习题 ·许多新的小节 ·大大扩充了参考文献
不管你是理工科系的学生,还是学商、国贸、经济,可能都有这样的微积分修课经验:无论多么专心听讲,教授讲的内容你仍然听不懂。本书作者试图告诉读者:“千万不要误以为听不懂全是自己的错!” 《微积分之屠龙宝刀》并非正式教科书,除了着重观念的解释之外,它还会告诉读者微积分该怎么教、好老师该怎么找、期末考试该怎么考,目的就是希望帮助读者更容易了解一般教科书里的精髓。
《偏微分方程的有效动力学(英文)》是国外数学著作原版系列中的一本。《偏微分方程的有效动力学(英文)》主要介绍几类重要的偏微分方程及其动力系统的动力学研究成果。《偏微分方程的有效动力学(英文)》系统地介绍了动力系统动力学的研究方法和作者近期的研究成果。
《微积分之倚天宝剑:打遍泰勒级数、多重积分、偏导数、向量微积分》是《微积分之屠龙宝刀》的续集,内容从极座标、无穷级数的收敛、空间向量,到参数曲线、多变数函数、偏导数、多重积分、向量场。想换一种方式,理解这些令人头疼的课题吗?欢迎你拿起《微积分之倚天宝剑:打遍泰勒级数、多重积分、偏导数、向量微积分》,跟随三位作者的脚步,一同披荆斩棘,度过危机,不管你是理工科系的学生,还是学商业、国际贸易、经济,可能都有这样的微积分修课经验:无论多么专心听讲教授讲的内容你仍然听不懂。《微积分之倚天宝剑:打遍泰勒级数、多重积分、偏导数、向量微积分》试图告诉读者:“千万不要误以为听不懂全是自己的错!”
不管你是理工科系的学生,还是学商、国贸、经济,可能都有这样的微积分修课经验:无论多么专心听讲,教授讲的内容你仍然听不懂。本书作者试图告诉读者:“千万不要误以为听不懂全是自己的错!” 《微积分之屠龙宝刀》并非正式教科书,除了着重观念的解释之外,它还会告诉读者微积分该怎么教、好老师该怎么找、期末考试该怎么考,目的就是希望帮助读者更容易了解一般教科书里的精髓。
This revision of the 1983 second edition of"Elliptic Partial Differential Equations of Second Order" corresponds to the Russian edition, published in 1989, in which we essentially updated the previous version to 1984. The additional text relates to the boundary H61der derivative estimates of Nikolai Krylov, which provided a fundamental ponent of the further development of the classical theory of elliptic (and parabolic), fully nonlinear equations in higher dimensions. In our presentation we adapted a simplification of Krylov's approach due to Luis Caffarelli.
《微积分之倚天宝剑:打遍泰勒级数、多重积分、偏导数、向量微积分》是《微积分之屠龙宝刀》的续集,内容从极座标、无穷级数的收敛、空间向量,到参数曲线、多变数函数、偏导数、多重积分、向量场。想换一种方式,理解这些令人头疼的课题吗?欢迎你拿起《微积分之倚天宝剑:打遍泰勒级数、多重积分、偏导数、向量微积分》,跟随三位作者的脚步,一同披荆斩棘,度过危机,不管你是理工科系的学生,还是学商业、国际贸易、经济,可能都有这样的微积分修课经验:无论多么专心听讲教授讲的内容你仍然听不懂。《微积分之倚天宝剑:打遍泰勒级数、多重积分、偏导数、向量微积分》试图告诉读者:“千万不要误以为听不懂全是自己的错!”
The first volume in this subseries of the Encyclopaedia 1S meant to familiarize the reader with the discipline Commutative Harmonic AnalysiS. The first article is a thorough introduction,moving from Fourier series to the Fourier transform,and on to the group theoretic point ofview.Numerous examples illustrate the connections to differential and integral equationS,appromation theory,nu theory, probability theory and physics.The development of Fourier analysis is discussed in a brief historical essay. The second article focuses on some of the classical problems of Fourier series;it’S a"mini—Zygmund”for the beginner.The third article is the most modern of the three,concentrating on singular integral operators.It also contains an introduction to Calderon-Zygmund theory.
本书一部讲述代数曲线的入门书籍,可以作为一数学专业的教程,具备基本的微积分知识可以完全读懂这本书。通过分类实数上的不可约三次曲线和证明它们的点能够形成abelian群,使得椭圆曲线的讲述非常易于学习,书中包括了两曲线相交数上的bezout定理的简单证明。在这新的版本中深入研究了幂级数参化曲线,并且列举出了参化的两大用处,计数曲线的多相交和曲线对偶性的证明及其重叠。目次:曲线的相交;二次曲线;三次曲线;参化曲线。
微积分作为整个数理知识体系的基石,不仅对后续诸多数理知识体系的研习具有基础性的意义,而且微积分知识体系自身就为认识世界提供了系统的思想与方法。 《微积分讲稿:高维微积分》主要针对向量值映照建立微分学与积分学,另包括级数。高维微分学主要包括:点列的极限、向量值映照的极限、向量值映照的可微性与导数、多元函数的分析性质、多元函数的无限小分析方法、多元函数与向量值映照的有限增量公式与估计、隐映照定理及其应用、逆映照定理及其应用等。高维积分学主要包括:曲线、曲面上积分的建立、闭方块上Riemann积分的Darboux分析与Lebesgue定理、Fubini定理与体积分换元公式、广义积分与含有参变量的积分、Gauss-Ostrogradskii公式、Green公式、Stokes公式与场论基础等。级数主要包括:数项级数、函数项级数、幂级数、Fourier级数等。 《微
为什么教科书里的微积分那么难懂?不要怕,这本简单、有趣的微积分入门书,帮你7天搞定!我们害怕微积分,是因为有一大堆抽象、难懂的概念、公式。其实,知道这些公式、概念是怎样创造出来的,你就能很容易理解掌握,再也不会再害怕!微积分到底有什么用?微分的结果是斜率,可以分析变化,股票、汇率与摄影都会用到;积分是导数的逆运算,目的在于找出变化的规律,求出面积!