本书是一本非常有趣的微积分入门参考书,它从蚂蚁的视角来讲解微积分。当打开本书时,你会发现蚂蚁无处不在。借助小小的蚂蚁,本书将微积分的核心概念和原理用最简单、最有趣、最容易理解的方式呈现了出来。无论是初次学习微积分的学生,还是学习过微积分却一知半解的学生,抑或是希望重新梳理微积分知识的读者,都能从这本书中有所收获。它将帮助你更通透地理解微积分,理解数学,帮助你在数学等科目的学习中变得更从容自信。
本书讲述了一种理解和学习微积分的新思路。书中通过探索微积分发展历程背后的数学动机,展现了这一数学基本工具的魅力。作者根据自己研究和教授微积分的丰富经验,结合多年从事中学和大学数学教育的心得体会,对传统的微积分教学方式,即大多按照从极限、微分、积分到级数的顺序进行学习的方法提出了异议,探讨了一种更有趣、更易被接受和理解的学习方法。作者写过不少富有启发意义的微积分教材,此次利用自己在教学与研究方面的特长,写成了这本内容丰富、风格有趣的 小书 。本书适合中学以上水平的数学爱好者、学生和教师阅读。
苹果有 3 个,蜜橘有 3 个,两边 同样 是 3 个。但 苹果 与 蜜橘 并不相同,如何能视为 同样 呢? 数学是一门十分重要的学问,怎样将如此重要的学问表现得直观、形象呢?教科书和习题集上是满满当当枯燥的文字、难懂的公式,犹如一堆没有灵魂的音符,这实在让人遗憾。本书作者巧妙地将图象和数学概念结合在一起,演奏了一曲华美的乐章。与考试和编程中使用的微积分知识相比,本书的内容相对简单,但不失趣味地揭示了微积分 细细切分、密密汇集 的思想,并十分形象地讲述了*值、极限、斜率、函数等知识。 奇幻旅程开始啦!
本书在 Sobolev 空间框架下, 介绍了积分泛函极小问题的现代偏微分方程的理论, 内容包括 Sobolev 函数空间及各种性质;经典变分方法:一阶变分、二阶变分、极小点存在的充分和必要条件、条件极值的 Lagrange 乘子法等;变分法的直接方法:下半连续性、补偿紧性、集中紧性、 Ekeland变分、Nehari 技巧等;三维欧氏空间极小曲面的 Douglas 方法和等周不等式的证明.
本书内容包括常微分方程初值、边值问题的数值解法,抛物型、双曲型及椭圆型偏微分方程的差分解法,偏微分方程和边界积分方程的有限元解法和边界元解法.本书选材力求通用而新颖,既介绍了在科学和工程计算中常用的典型数值计算方法,又包含了近年计算数学研究的一些新的进展,包括作者本人的若干研究成果.本书以介绍微分方程的数值求解方法为主,但也涉及有关的理论,叙述和论证力求既深入浅出,又严格准确.
本书围绕Lebesgue测度与积分及其相关内容,总结和归纳了一些常用的解决问题的方法,并通过若干典型例题加以说明。每一章后都配备了一定数量的习题,而且每题都有较为详细的解答,并尽量做到通俗易懂。 本书注重方法的讲解,因而对于初学者可以起到事半功倍的效果,对于备考研究生会有很大的帮助,也可以作为“实变函数”任课教师的参考书。
本书的编写依据是*颁布的高等学校财经类专业核心课程《经济数学基础——微积分》教学大纲,同时参考了近年来经济管理类硕士研究生入学统一考试数学考试大纲。因此,它可以作为高等财经院校本科各专业的《微积分》课程教材使用,亦可供有志学习本课程的自学者选用。 本书在内容取舍上尤其注重数学与经济学的有机结合,强调微积分的概念及有关原理在经济学中的应用,强调本书用到的有关经济学的概念的严密性与规范性,力图在保持传统教材优点的基础上,把微积分的基本原理和经济学的相关知识恰当结合,以更有利于课程的讲授与学习,并为学生以后的经济学学习打下良好的数学基础。 本书充分注意到数学基本概念和原理的逻辑性与严密性,同时也考虑了一些数学基本概念在经济学中的特殊应用。
高等数学是大学理工科及经济管理类专业的重要基础课,是培养学生形象思维、抽象思维、创造性思维的重要园地。 本书具有以下特点:广泛使用表格法,使有关内容、解题方法和技巧一目了然;从浩瀚的题海中归纳、总结出的题型解法,对同学们解题具有很大的指导作用;用系列专题分析对教材的重点、难点进行了诠释,对同学们掌握这方面知识起到事半功倍的效果。 本书是针对考研、参加数学竞赛的同学撰写的,对在读的本科生、专科生及数学教师同仁也具有很高的参考价值。
本书以高校数学分析、高等数学课程中的微积分内容为载体,注重从当前数学教育改革中的实际问题与教学案例出发,以新视角和新观点阐述数学探究性学习的基本原理和基本方法,努力体现探究性学习在目标与设计、内容体系、思想方法、科学概念、理论及其历史现状等方面的基本理念。全书在依照我国高校的实际国情和实践需求的基础上,借鉴、消化有关的优秀案例,吸收优秀研究成果和鲜活的精彩案例,反映探究性学习方面已有的有益探索与实践智慧,帮助高校教师和学生构建新的学习方式,为开展数学探究性学习提供理论支持。对学习者在数学教学知识和数学教学基本技能的掌握,数学教学水平和教育研究能力的提高等方面有所帮助,并能运用所学的教育理论和教学方法解决教学实践中的问题,为当前数学课程改革、数学教学改革提供理论指导。
本书是为了配合高等教育出版社出版,同济大学数学系编写的《微积分》配套辅导用书。书中由考试要求、内容提要、习题解答等部分组成。本书巧妙地运用了“知识点窍”与解题过程相结合,旨在帮助读者掌握课程重点、学会分析方法、提高解题能力。
本书是一本专门为理工科高等职业教育编写的大专数学教材。内容主要包括:微积分,级数与微分方程,常微分方程,线性代数,概率论与数理统计及数学建模。该书具有如下特点:采用模块式,使接口放宽,适用各不同层次的学生使用;注重实用性,帮助读者掌握方法,增加具有启发性的应用性题目;采用手册型,便于查阅,方便读者查用;便于自学,通俗易懂、可使读者获得较好的学习效果。 该书适用于大专院校的学生及自学高等数学的读者使用。
赵利彬等编著的《经济数学基础微积分》是在贯彻落实*“高等教育面向21世纪教学内容和课程体系改革计划”要求的基础上,按照国家非数学类专业数学基础课程教学指导委员会*提出的“经济管理类本科数学基础课程教学基本要求”,为适应21世纪教学改革的需要与市场经济对人才的需求,结合一些本专科院校学生的基础和特点进行编写的。 《经济数学基础微积分》内容包括:函数、极限与连续、导数与微分、中值定理与导数应用、不定积分、定积分、定积分应用、广义积分、向量代数与空间解析几何、多元函数微分学及其应用、重积分、无穷级数、常微分方程。书内各节后均配有相应的习题,书末附有习题参考答案。 《经济数学基础微积分》体系结构严谨、知识系统、讲解透彻、内容难度适宜、语言通俗易懂、例题习题丰富。适合作为普通高等院
数学文化小丛书精选对人类文明发展起过重要作用、在深化人类对世界的认识或推动人类对世界的改造方面有某种里程碑意义的主题,深入浅出地介绍数学文化的丰富内涵、数学发展史中的一些重要篇章以及一些著名数学家的历史功绩和优秀品质等内容,适于包括中学生在内的读者阅读。
本书讲述了一种理解和学习微积分的新思路。书中通过探索微积分发展历程背后的数学动机,展现了这一数学基本工具的魅力。作者根据自己研究和教授微积分的丰富经验,结合多年从事中学和大学数学教育的心得体会,对传统的微积分教学方式,即大多按照从极限、微分、积分到级数的顺序进行学习的方法提出了异议,探讨了一种 有趣、 易被接受和理解的学习方法。作者写过不少富有启发意义的微积分教材,此次利用自己在教学与研究方面的特长,写成了这本内容丰富、风格有趣的“小书”。本书适合中学以上水平的数学爱好者、学生和教师阅读。
《常微分方程》是常微分方程基础课教材,内容涉及分离变量法、常系数线性微分方程和方程组、变系数线性微分方程和方程组、非线性微分方程,以及定性和稳定性理论初步等。 《常微分方程》理论严谨,叙述清楚且深入浅出,特别是对常系数线性微分方程这一部分的讲解有独到之处,其中待定系数法的证法非常新颖,而且相当简洁,胜过了传统教材的证法。 《常微分方程》适合于综合性大学、理工科大学及师范类院校的数学专业学生使用或作为参考书籍。
兰辉、刘庆生主编的《文科微积分/同济数学系列丛书》是同济大学数学系承担高等数学课程的骨干教师,在借鉴了同济大学相关优秀教材的基础上编写而成的。全书通过探讨数学思想本质的方法阐述数学理论,避免过多的数学公式和繁琐的计算技巧,注重数学理论与实际生活的联系,直观易懂,深入浅出,符合文科学生的学习特点;并通过巧妙地使用数学史、科学家文献中的原始论述、数学理论与实际生活的联系等,使历史背景与理论知识无缝对接,延伸了知识点的内涵。 《文科微积分/同济数学系列丛书》内容包括一元函数微积分理论及应用,可供高等院校文科专业的学生使用,也可供相关人员参考。
本书首先在前三章介绍了数学机械化软件平台MMP的基本功能与使用方法,然后在后面的各章中通过MMP的运行实例介绍了数学机械化的基本理论与*近展,特别是方程求解与机器证明方面的*研究成果。第四章介绍了多项式方程系统,常微分方程系统,偏微分方程系统的吴特征列方法与投影定理。第五章介绍初等与微分几何中定理自动证明与自动发现的吴方法与若干*进展。第六章介绍代数方程求解的吴特征列方法以及参数方程求解、预解式理论及其在机器人、曲面拼接、代数簇隐式化中的应用。第七章介绍微分方程求解的吴特征列方法以及微分方程初等函数解、行波解、幂级数解的求解方法。第八章介绍代数系统全局优化的吴有限核定理以及不等式的自动证明与发现。每章末尾还对本章的内容与MMP实现的方法所涉及的文献进行了介绍。 本书既可以作为MMP的使用手