微分动力系统的研究始于上世纪60年代初,它主要研究随时间演变的动力系统的整体性质及其在扰动中的变化,其前身为常微分方程定性理论和动力系统理论,随着对非线性力学问题研究的深入和系统科学各分支的形成,微分动力系统越来越成为有关学者关注的新兴学科领域。本书是作者根据多年科研与教学的积累编写而成,内容包括:动力系统简介,双曲不动点,Smale马蹄、Anosov环面同构和螺线圈吸引子,双曲集,公理A系统与Omega稳定性定理。本书行文简洁、观点极具特色,书中将双曲不动点理论和双曲集理论从数学实质上完全统一起来,从而达到揭示表面差异之下的实质上的一致,是一本有很高学术价值的著作。本书可供研究微分动力系统方向的研究人员,以及应用数学及相关专业的教师和学生使用参考。
《微积分习题与典型题解析》根据普通高校微积分课程教学大纲,并参照***考试中心颁发的《全国硕士研究生入学统一考试数学考试大纲》编写,内容分为函数与极限、连续性与导数概念、微分中值定理与导数的应用、不定积分、定积 、分、定积分的应用与反常积分、空间解析几何、多元函数微分学、二重积分与三重积分、曲线积分与曲面积分、数项级数与幂级数、微分方程等12个专题,每个专题含 重要概念与基本方法 习题选解 典型题选解 三个部分,其中 习题 选自张玉莲、陈仲等编著的《微积分》(Ⅰ,Ⅱ)一书的习题, 典型题 选自全国历年硕士研究生入学试题、南京大学历年硕士研究生入学(单考)试题以及编者收集和原创的 好题 . 《微积分习题与典型题解析》可供各类高等学校的大学生作为学习微积分或高等数学课程和考研复习的参考书,
《微积分》这本由著名数学家王元和方源合作的 微积分教材,倾注了两位作者多年在微积 分教学中的独有心得和体会。本书写法经典,但是富 含特色每一个概念的引入, 都是通过众多的例子、完整的细节加以闸述;在某些 知识结构处理上独具创新, 非常巧妙;精心安排的习题可以帮助读者更好地落实 所学的知识。 本书由Springer出版社于1996年先行出版了英文 版,获得了巨大的成功,并 赢得了广泛的好评。 本书无论是用于课堂教学还足自学,都是数学、 物理和工程等理工科学生学习 微积分的一个良好的选择。
《微积分同步辅导与习题全解(高教社?同济大学?第三版?下册)》配套同济大学数学系主编的《微积分(第三版?下册)》。《微积分同步辅导与习题全解(高教社?同济大学?第三版?下册)》对原教材内容进行了归纳总结并逐章编写,对部分知识点做了有益的扩展延伸,对重点难点进行了剖析,对所有的习题进行了详尽的解答。《微积分同步辅导与习题全解(高教社?同济大学?第三版?下册)》每章包括:教学基本要求、内容要点、主要方法、典型例题分析、习题全解、近年考研数学试题选解等栏目。