本书是一本非常有趣的微积分入门参考书,它从蚂蚁的视角来讲解微积分。当打开本书时,你会发现蚂蚁无处不在。借助小小的蚂蚁,本书将微积分的核心概念和原理用最简单、最有趣、最容易理解的方式呈现了出来。无论是初次学习微积分的学生,还是学习过微积分却一知半解的学生,抑或是希望重新梳理微积分知识的读者,都能从这本书中有所收获。它将帮助你更通透地理解微积分,理解数学,帮助你在数学等科目的学习中变得更从容自信。
本书讲述了一种理解和学习微积分的新思路。书中通过探索微积分发展历程背后的数学动机,展现了这一数学基本工具的魅力。作者根据自己研究和教授微积分的丰富经验,结合多年从事中学和大学数学教育的心得体会,对传统的微积分教学方式,即大多按照从极限、微分、积分到级数的顺序进行学习的方法提出了异议,探讨了一种更有趣、更易被接受和理解的学习方法。作者写过不少富有启发意义的微积分教材,此次利用自己在教学与研究方面的特长,写成了这本内容丰富、风格有趣的 小书 。本书适合中学以上水平的数学爱好者、学生和教师阅读。
本书是作者多年在复旦大学讲授“数学分析原理”课程的讲义基础上编写而成的。全书共7章,内容包括:分析基础、实数系基本定理,极限与连续,微分,积分,级数,多元函数微积分,反常积分和含参变量积分。教材注重思想性,在内容上尽量做到融会贯通,突出理论的严密性,同时每章都精选了例题与习题。
《微积分学教程(第1卷)(第8版)》是一部卓越的数学科学与教育著作。自*版问世50多年来,本书多次再版。至今仍被俄罗斯的综合大学以及技术和师范院校选作数学分析课程的基本教材之一。并被翻译成多种文字,在世界范围内广受欢迎。 本书所包括的主要内容是在20世纪初*后形成的现代数学分析的经典部分。本书*卷包括实变量一元与多元微分学及其基本应用;第二卷研究黎曼积分理论与级数理论;第三卷研究多重积分、曲线积分、曲面积分、斯蒂尔吉斯积分、傅里叶级数与傅里叶变换。 本书的特点是:一、含有大量例题与应用实例;二、材料的叙述通俗、详细和准确;三、在极少使用集合论的(包括记号)同时保持了叙述的全部严格性,以便读者容易初步掌握本课程的内容。 本书可供各级各类高等学校的数学分析与高等数学课程作为教学参考书,是数学
拟微分算子理论自20世纪中叶形成以来,经过几十年的发展已成为现代分析理论的重要组成部分,并特别在偏微分方程理论及相关问题的研究中成为必不可少的工具。本书详细介绍了拟微分算子的基本理论及其在偏微分方程中的应用,为基础数学与应用数学专业的研究生、教师及相关研究人员提供了宝贵的参考。本次修订少量更新了部分章节内容并增加了后记。 本书既是这一领域的一本入门书,又介绍了该理论在偏微分方程中几个最重要方面的应用,可为读者进一步学习与研究做准备。
按《微积分》(经管类)(第三版)内容展开,体例和内容包括:基本要求、内容提要、释疑解难、例题分析、考题选讲、复习题和自测题及复习题解答与自测题解答。内容充实,选题灵活,题型丰富,覆盖面广.本书第三版是在第二版的基础上,根据**关于《经济和管理类本科数学基础课程教学基本要求》,结合近几年教学改革实践和新形势下教材改革的精神以及我们在使用本书第二版过程中的教学积累和经验进行综合修订。在修订中,我们保留了第二版的体系和风格,吸收了使用本书第二版的同行们提出的意见和建议,特别是吸收了使用本书第二版的学生们的意见和建议,使得本书第三版能更好的适合当前教学的需要,更好的贴近学生学习的需要。
本套书由《微积分I(第二版)》、《微积分II(第二版)》两本书组成.《微积分I(第二版)》内容包括极限与函数的连续性、导数与微分、导数的应用、不定积分、定积分及其应用、广义积分、向量代数与空间解析几何.在附录中简介了行列式和矩阵的部分内容.《微积分II(第二版)》内容包括多元函数微分学、二重积分、三重积分及其应用、曲线积分、曲面积分、场论初步、数项级数、幂级数、傅里叶级数、广义积分的敛散性的判别法、常微分方程初步等.本套书继承了微积分的传统特色,内容安排紧凑合理,例题精练,习题量适难易恰当.
本书从常识性的平凡道理出发, 不用极限概念也不用无穷小概念, 直截了当地定义了函数的导数, 证明了导数的常用性质; 定义了定积分, 推出了微积分基本定理. 严谨而不失直观的推理, 颠覆了微积分必须以极限概念为基础的传统观点. 全书共 18 章, 前 10 章用作者发现的新方法构建了一元微积分的逻辑框架; 后 8 章阐述新方法与传统体系的关系和接轨的方案, 以及一些重要的微积分知识. 本书化解了传统微积分教学的若干最大难点, 为建立高中和大学的微积分新体系描绘了蓝图.
本书系统介绍了*抛物型、双曲型和椭圆型方程的有限元分析方法,全书共6 章。第1 章是预备知识,包括Banach 空间和Hilbert 空间中的几类有界线性算子、Sobolev 空间基本理论、算子半群、有限元方法的基础理论,以及无穷维*积分的基本概念和性质;第2 章介绍*抛物型方程的有限元分析方法,其中包括确定性抛物方程有限元方法理论分析、自伴算和非自伴算子*抛物方程的有限元分析方法;第3 章对经典的*Navier-Stokes 方程进行有限元分析和后验误差估计,重点介绍了后验误差估计方法;第4 章以分别带有Q-Wiener 过程噪声项和带有Brownian 片噪声项的两类*弹性方程为例,介绍双曲型*偏微分方程的有限元理论分析方法;第5 章以*Poisson 方程和*Stokes 方程为例,介绍椭圆型*偏微分方程的有限元理论分析方法;第6 章介绍*积分微分方程有限元理论分析方法。
《微积分学导论》是在中国科学技术大学高等数学教研室编写的《高等数学导论》基础之上,由参与微积分教学多年的教师分工编写而成的,内容结构方面得以重新组织和优化,而且部分过于烦琐的内容也得到了删除或简化,以适应当今理工科数学教育的发展,并满足培养学生的要求。分上、下两册出版,内容包含微积分学的核心内容及其应用。 本书是下册,内容包括多变量函数的微分学、多变量函数的积分学、无穷级数、含参变量积分、傅里叶分析等五章。本书的编写充分考虑了学生的背景和认知水平,尽量由具体问题引入数学概念,同时采用语言描述、公式表达、数值列表以及图形说明等多种方式,以使抽象深奥的数学概念、思想和方法变得具体、生动、形象和直观。为加深对概念、定理等的理解和掌握,书中编有丰富的例题,并有详细的解答,可给学
《常微分方程(第二版)》共8章,内容分别为:绪论、初等积分法、定解问题与适定性、高阶微分方程、一阶线性微分方程组、稳定性理论简介、一阶线性偏微分方程和差分方程。书末附有习题参考答案及提示,并专门增加 常微分方程学习指导与习题解答 的内容,便于读者进一步阅读参考。全书详细介绍了常微分方程的基本理论和常用解法,理论严谨,叙述深入浅出;注重思想方法的阐述、概念实质的揭示和近代数学观念的渗透;强调微分方程的实际应用(几乎每章都有应用实例),尤其是在社会、经济、生态领域中的应用,体现了财经类专业的教育特色。 《常微分方程(第二版)》可作为高等院校数学与应用数学、信息与计算科学、数量经济、金融工程等专业本科生的教学用书,也可供经济类各专业的教师与研究生参考。
《经济数学--微积分(21世纪普通高等院校管理学专业系列规划教材)》编著者邢俊、王慧。本书按照国家*高等教育司审定的“高等学校财经类专业核心课程《经济数学基础》教学大纲”的要求编写,由邢俊等编著的《21世纪普通高等院校管理学专业系列规划教材·经济数学:线性代数与概率论》全面系统地介绍了线性代数与概率论的基础知识。《21世纪普通高等院校管理学专业系列规划教材·经济数学:线性代数与概率论》共分两部分8个章节。每章配有一定数量的习题,书末附有参考答案。本书内容丰富,思路清晰,例题典型,注重揭示解题规律,有利于培养和提高学生的学习兴趣以及分析和解决问题的能力。《21世纪普通高等院校管理学专业系列规划教材·经济数学:线性代数与概率论》可供财经类专业本科生使用,也可作为相关专业的参考用书。
无
《非线性物理科学:微分方程群性质理论讲义》提供了确定和利用微分方程对称性的李群方法简明和清晰的介绍,并提供了在气体动力学和其他非线性模型中的大量应用,以及《非线性物理科学:微分方程群性质理论讲义》作者在这个经典领域的卓越贡献。《非线性物理科学:微分方程群性质理论讲义》中还包含在其他现代书籍中不曾涉及的一些非常有刚的材料,例如:Ovsyannikow教授发展的部分不变解理论,该理论提供了求解非线性微分方程和研究复杂数学模型强有力的工具。
本书是“北京大学数学教学系列丛书”之一,是数学各专业本科生“常微分方程”课程的教材,它系统介绍了常微分方程的基本理论和基本方法,内容包括:微分方程的基本概念、初等积分法、微分方程解的存在和唯 一性、解对初值和参数的依赖性、线性微分方程组、幂级数解法、边值问题、一阶偏微分方程、微分方程定性理论简介。本书作者在北京大学数学学院讲授“常微分方程”课程二十余年,具有丰富的教学经验和积累,在微分方程的教学和科研方面有一定的建树。本书注重知识的来龙去脉,注意理论与实际相结合,强调方法与应用,是部 的“常微分方程”教材。
《*积分导论(第2版)(英文版)》是一部可读性很强的讲述*积分和*微分方程的入门教程。将基本理论和应用巧妙结合,非常适合学习过概率论知识的研究生,学习*积分。运用现代方法,*积分的定义是为了可料被积函数和局部鞅,紧接着是连续鞅的变分公式ito变化。《*积分导论(第2版)(英文版)》包括在布朗运动的描述、鞅的hermite多项式、feynman-kac泛函和schrodinger方程。这是第二版,讨论了cameron-martin-giranov变换,并且在后一章引入*微分方程和一些学生用的练习。
《微积分学导论(上册 第2版)》是在中国科学技术大学高等数学教研室编写的《高等数学导论》基础之上,由参与微积分教学多年的教师分工编写而成的,内容结构方面得以重新组织和优化,而且部分过于烦琐的内容也得到了删除或简化,以适应当今工科数学教育的发展,并满足培养学生的要求。《微积分学导论(上册 第2版)》分上、下两册出版,内容包含微积分学的核心内容及其应用。 《微积分学导论(上册 第2版)》是上册,内容包括实数与函数、极限理论、单变量函数的微分学、单变量函数的积分学、微分方程等五章。《微积分学导论(上册 第2版)》的编写充分考虑了学生的背景和认知水平,尽量由具体问题引入数学概念,同时采用语言描述、公式表达、数值列表以及图形说明等多种方式,以使抽象深奥的数学概念、思想和方法变得具体、生动、形象