本书通过图解的形式,在逻辑上穿针引线,讲解了大学公共课"高等数学(微积分) 中与单变量函数相关知识点,也就是经典教材《高等数学》上册中的绝大多数知识点。这些知识点是相关专业的在校、考研学生必须掌握的,也是相关从业人员深造所应的。 本书围绕着"线性相似 ,讲解了极限、导数、微分、中值定理、洛必达法则、泰勒公式、极值、最值、定积分、牛顿莱布尼茨公式、微分方程求解等知识,逻辑上层层递进,再辅以精心挑选的各种例题、生活案例等,大大降低了学习门槛。
《普林斯顿微积分读本(修订版)/(美)阿德里安.班纳》 本书是作者多年来给普林斯顿大学本科一年级学生开设微积分的每周复习课。本书专注于讲述解题技巧,目的是帮助读者学习一元微积分的主要概念。深入处理一些基本内容,还复习一些主题。本书不仅可以作为参考书,也可以作为教材,定会成为任何一位需要微积分知识人学习一元微积分的很好好的指导书。 《普林斯顿数学分析读本/图灵数学统计学丛书》 本书是《普林斯顿××读本》系列图书的第二本,该套书的论述风格友好、平易人,通过作者与读者之间的互动对话和相关示例很好清晰地阐明了数学概念,提供了命题和定量逻辑方面的知识,可以使读者精通自己的数学思路。本书讲解了学习实分析的基础内容,包括基本的数学与逻辑、实数、集合、拓扑、序列等.作者以通俗易懂且略带幽默的口吻讲述了两
微分几何讲义(修订版)
本书讲述偏微分方程现代理论的最基础部分,内容共五章.其中前两章系统介绍函数空间、广义函数和Fourier分析理论的最基础部分,是学习偏微分方程现代理论必须具备的最基本的分析学知识,第3和第4两章系统讲述了二阶线性椭圆型方程和二阶线性抛物型、双曲型和Schr?dinger型三类发展型方程的最基础理论,这两章内容的学习能够基本满足希望专门研究椭圆型方程、抛物型方程或非线性发展方程以及相关学科领域读者的需要.最后一章简要介绍线性偏微分方程一般理论和拟微分算子理论.本书最突出的特点是把椭圆型方程和抛物型方程的Cμ理论与Lp理论都用Fourier分析理论做了统一的处理,并把这些理论都构建在L2理论之上,从而使得这些以前需要与偏微分方程的Fourier分析方法独立地学习的不同理论体系很自然地融合在一起.
这是一部译自俄文的享誉世界的大型英文数学工具书。经过半个世纪的多次补充和修订,它已成为数学家、物理学家和工程技术人员常用的主流工具书。本书收集了1万2千余条从初等函数到特殊函数的积分公式、级数和公式及乘积的数学用表。本书是第8版,本版在第7版的基础上做了修订,其中对上一版的后三章内容做了调整。 目次:导论:初等函数;初等函数的不定积分;初等函数的定积分;特殊函数的不定积分;特殊函数的定积分;特殊函数;矢量场理论;积分不等式;傅里叶变换,拉普拉斯变换和梅林变换。
这是当今关于偏微分方程 (PDE) 的*权威教材的第二版。它给出了PDE理论学习中现代技术的总览,特别注重非线性方程。本书内容广泛,阐述清晰,已经是PDE方面经典的研究生教材。在本版中,作者做了大量改动,包括 新增非线性波动方程的一章, 超过 80 个新习题, 许多新的小节 大大扩充了参考文献。
本书这是一套3卷集经典名著,版曾影印出版,广受好评。第2版新增内容312页(3卷),这是第3卷。本卷主要论述非线性偏微分方程。其中包括经典连续统力学方程和微分几何中的方程,以及非线性扩散问题。书中论及的分析方法包括索伯列夫空间理论、hˉlder空间理论、hardy空间理论和morrey空间理论。非线性分析用的泛函空间和算子理论;非线性椭圆方程;非线性抛物方程;非线性双曲方程;不可压缩流用的欧拉方程和navier-stokes方程;爱因斯坦方程。读者对象:偏微分方程、数学物理、微分几何、调和分析和复分析等专业的研究生科研人员。 读者对象:偏微分方程、数学物理、微分几何、调和分析和复分析等专业的研究生科研人员。
本书详细地介绍分数阶偏微分方程的数值方法.这些分数阶偏微分方程包括空间、时间、时间-空间分数阶偏微分方程,反常次扩散方程,修正的反常次扩散方程,分数阶Cable方程,也包括时间-空间分数阶偏微分方程,多项时间-空间分数阶偏微分方程和变分数阶偏微分方程,以及人类大脑组织中的反常扩散模型,非均匀介质中扩散过程的分数阶模型。所讨论的数值方法包括有限差分方法、有限元方法、谱方法、有限体积方法、无网格方法和矩阵转换技巧,详细介绍如何构造适当的数值方法,并讨论了数值方法的稳定性和收敛性,以及数值分析技巧和方法,给出了部分数值结果。同时也介绍了分数阶偏微分方程的一些数值实例,后介绍所提出的数值方法在医学工程和心脏科学中的应用。
本书力求对分数阶微分方程的差分方法作个简明介绍.全书分为6章.第1章介绍4种分数阶导数的定义,给出两类*简单的分数阶常微分方程初值问题解析解的表达式;介绍分数阶导数的几种数值逼近方法,研究它们的逼近精度,并应用于分数阶常微分方程的数值求解.这些是后面章节中分数阶偏微分方程数值解的基础.第2~6章依次论述求解时间分数阶慢扩散方程的有限差分方法、求解时间分数阶波方程的有限差分方法、求解空间分数阶偏微分方程的有限差分方法、求解一类时空分数阶微分方程的有限差分方法以及求解一类时间分布阶慢扩散方程的有限差分方法.对每一差分格式,分析其**可解性、稳定性和收敛性.
阿德里安·班纳著的《普林斯顿微积分读本》阐述了求解微积分的技巧,详细讲解了微积分基础、极限、连续、微分、导数的应用、积分、无穷级数、泰勒级数与幂级数等内容,旨在教会读者如何思考问题从而找到解题所需的知识点,着重训练大家自己解答问题的能力。 本书适用于大学低年级学生、高中高年级学生、想学习微积分的数学爱好者以及广大数学教师,既可作为教材、习题集,也可作为学习指南,同时还有利于教师备课。
《偏微分方程.第2卷(第2版)》这是一套3卷集经典名著,版曾影印出版,广受好评。第2版新增内容312页(3卷),这是第2卷。本卷在第1卷的基础上进一步讨论线性偏微分方程中的一些高等问题,其中包括伪微分算子、自伴算子的泛函分析和wiener测度。书中还介绍了微分几何的基本概念、椭圆微分算子的谱理论、由障碍产生的波动散射理论、狄拉克算子用的指数理论、布朗运动和扩散等。 目次:伪微分算子;谱论;由障碍产生的散射;狄拉克算子和指数理论;布朗运动和位势论;-neumann问题;联络和曲率。 读者对象:偏微分方程、数学物理、微分几何、调和分析和复分析等专业的研究生科研人员。
本书介绍了常微分方程的基本解法与建模应用方法。主要内容包括:常微分方程的初等积分法、高阶线性微分方程的解法、线性微分方程组的解法、常微分方程的算子解法、常微分方程的数值解法及其C程序设计、Maple软件在解常微分方程中的应用、常微分方程的建模应用。部分内容是云南师范大学“微分方程”精品课程教学团队十多年来的教学实践与应用研究的特色成果。
本书内容涉及调和分析的经典理论,特别是与偏微分方程研究密切相关的方法与技巧。例如:C-Z奇异积分算子、Littlewood-Paley理论、抽象插值方法、可微函数空间的调和分析刻画等。同时着力于用调和分析的方法研究偏微分方程。为此,详细讨论了振荡积分理论、Fourier限制型估计及相应的Strichartz估计、Keel-Tao端点时空估计等。借助于调和分析的现代理论与方法,研究了波动及色散方程的Cauchy问题的适定性、低正则性与散射性理论。第二版对一些内容进行了增删,诸如:增加了发展型方程的调和分析方法的研究背景、非线性Klein-Gordon方程的低正则性,删除了波动方程的散射性。重新改写了一些章节,增加了许多注记,以反映这一领域的最新进展。本书的特色是将调和分析的现代方法与偏微分方程研究有机的结合起来,可以帮助读者很快进入这一领域研究的前沿。
本书系统讲述了偏微分方程一般理论的主要结果和研究方法。主要内容包括:实分析与泛函分析在Sobolev空间中的应用,整数次与分数次Sobolev空间的基本性质和基本技巧,如逼近理论、紧嵌入理论、迹定理、单位分解等基本理论以及局部化、平直化、光滑化和紧支化等技巧,二阶线性椭圆方程的各类边值问题弱解的存在唯一性、正则性、极值原理、Schauder理论等方面的主要结果以及泛函方法、特征值方法、差商方法等现代偏微分方程方法和De Giorgi迭代技巧,二阶线性抛物方程和二阶线性双曲方程的基本理论,弱解的存在唯一性、正则性,能量方法,Galerkin方法,Lions定理与发展方程以及线性抛物型方程的Schauder理论和Lp理论,一阶线性双曲型方程式的特征线方法,一阶线性双曲型方程组的基本概念和对称双曲系统的黏性消失法等。
本书是大学数学系列创新教材之一,内容主要包括:空间解析几何,空间理论初步与矢量值函数微积分, 多元函数微分学,重积分,曲线积分与曲面积分,无穷级数.本书风格独特、特点鲜明、内容丰富、例题典型.本书主要是基于 大学强基计划实验班、新工科专业一年级工科学生实验班或提高班,加强厚实的数学基础,加强数学思想方法和应用数学能力,强化逻辑思维能力的培养而编写的. 本书可作为研究型大学理工科学生一年级 学期的数学课程教材或者教学参考书,同时也可作为研究生入学考试中高等数学科目的复习资料.