《几何原本》成书于公元前三百年左右,全书十三卷,是欧几里得将古希腊数学集大成的著作,包括了希腊科学数学家:泰利斯、毕达哥拉斯、希波克拉提斯等人的成果。它既是一本数学著作,也是哲学巨著,标志着人类首次完成了对空间的认识。全书章节安排严谨,由定义、公设、设准、命题(定理)、证明,以及符号和图像所构成,《几何原本》被翻译成世界上几乎所有的文字,对人们理性推演能力的影响,即对人的科学思想的影响深刻且巨大。
《数林外传系列:向量复数与质点》主要论述用向量解决常见几何问题的方法,是基于向量相加的首尾衔接规则的回路法。全书共7章,从被人忽视的向量回路人手,介绍向量形式的定比分点公式和四边形中位线公式及其应用,对垂直问题、圆问题、三角形五心问题等作了专题研究;同时探讨了与向量法密切相关的复数法和质点法;对于不同解法之间的优劣,列举大量实例进行比较研究。 《数林外传系列:向量复数与质点》是在《绕来绕去的向量法》基础上进一步研究的成果,可供中学和大学的数学教师及理工科教师、中学生和大学生、数学爱好者以及数学教育研究者参考。
《全国数学教师专著系列·数学解题与研究丛书:立体几何与组合》注重科学性、系统性和趣味性,全书共含34篇小文章,每篇文章各自独立成文,所以《全国数学教师专著系列·数学解题与研究丛书:立体几何与组合》可系统性地研读,也可有选择性地阅读。《全国数学教师专著系列·数学解题与研究丛书:立体几何与组合》可作为高三复习备考用书,也可供中学、师生及初等数学爱好者研读,或作为数学竞赛辅导资料和师范数学教法方面的。
《高等学校工科电子类规划教材:离散数学(第3版)》介绍计算机专业最需要的离散数学基础知识,共8章,包括数理逻辑、集合、二元关系、函数、无限集合、代数、格与布尔代数、图论等,并含有较多的与电脑科学和工程有关的例题和习题。《高等学校工科电子类规划教材:离散数学(第3版)》适合於高等理工科院校电脑科学、工程和应用专业作教材,也可供教师、研究生、高年级学生和有关工程技术人员作参考书。
几何难题困扰了人类2000多年,让许多伟大的数学家为之辛勤地思考并耗费大量的精力,人类也在解决他们的过程中发展了新的数学。因此了解这些问题以及了解这些问题是如何解决的,对学数学的人和对数学感兴趣的中学生来说是很有意义的。 本书以很少的篇幅,从历史的发展的角度展开,穿插了一些历史资料和生动的故事。另外作者设计了一系列的习题,让读者参与到问题的解决中去。本书自1969年出版以来,直到现在仍是一本很受读者欢迎的读物。 本书适合对此感兴趣的大学生,中学教师,以及有较好代数和几何基础的中学生等阅读。
《组合数学》(原书第4版)侧重于组合数学的概念和思想,包括鸽巢原理、计数技术、排列组合、Polya计数法、二项式系数、容斥原理、生成函数和递推关系以及组合结构(匹配、实验设计、图)等,深入浅出地表达了作者对该领域全面和深刻的理解,介绍了历史上源于数学游戏和娱乐的大量实例,其中对Polya计数、Burnside定理等的处理使得不熟悉群论的学生也能够读懂。除包含第3版中的内容外,本版又进行了更新,增加了莫比乌斯反演(作为容斥原理的推广)、格路径、Schroder数等内容。此外,各章均包含大量练习题,并在书末给出了参考答案与提示。
本书探讨了三角形和圆形的几何结构,主要专注于欧氏理论的延伸并详细地研究了许多相关定理。在讨论的数百个定理和推论中,一些已经给出了完整的证明,另一些未证明的用以留作读者练习使用。 本书适合大、中学师生及数学爱好者学习和收藏。
本书是点集拓扑学方面的一本经典著作,全书共十章,内容为:拓扑空间、积空间、仿紧空间、紧空间、一致空间、复形和扩张子、逆极限和展开定理、Arhangelskii空间、商空间和映射空间、可数可乘的空间族.正文前的绪论简要地叙述了阅读本书所需的集合论的基本知识.书中有大量的例题和习题,有益于加强基本训练。