19世纪下半叶至20世纪初,欧氏几何学经历了一场快速的复兴,期间发现了数以千百计的新定理。本书分十三个章节介绍了其中优美的一些珍宝。有一些构思精妙的定理在别的书中很难看到,如亚当斯圆,里格比点,春木定理等。 本书写的生动有趣,逻辑严谨,深入浅出。书中所列举的定理基本上都给出了详细的初等证明,书末附有习题解答。具有中学几何基本知识的读者就能看懂。
本书是一本全面介绍分形几何理论及其在各领域应用的专著。全书分成两部分,部分阐述了分形与分形几何的一般理论,包括维数的各种概念及计算方法,分形的局部结构,分形的射影、乘积和交集等;第二部分主要是分形的应用举例,包括自相似集和自仿射集、函数的图、数论和纯数学中的例子、动力系统、Julia集、分形及物理应用等。本书还提供了课程建议和较为全面的参考文献。 本书对分形的介绍深刻而全面,可作为数学工作者和科研人员学习分形的参考书;合理地选择适当的章节,也可作为高年级本科生和研究生的教材。
本书集中介绍了最近几年出现的、在研究分形的数学理论中行之有效的各种新技巧,其中包括各种研究维数及分形集和分形测度的其它参数的方法,以及概率分析中的重要定理,如遍历定理和更新定理在分形研究中的应用,同时还阐述了许多新的更复杂的技巧,如热力学形式体系及切线测度等,这都是深入研究分形必不可少的工具。 本书可以看成是《分形几何一数学基础及其应用》一书的续篇,是深入进行分形理论研究的教科书和参考书。 本中译本的翻译出版获得了广东省自然科学基金的部分资助。
《离散几何讲义(英文影印版)》旨在为读者提供一本学习离散几何的引入教程,主要内容包括凸集,凸多面体和超平面的安排;几何构型的组合复杂性;交叉模型和凸集的截面;几何ramsey型结果;有限几何空间嵌入到赋范空间等。在好多应用领域,都可以涉及到这里的很多结果和方法。目次:凸性;点格和minkowski定理;凸独立子集;事件问题;凸多面体;下包络;凸集的相交模型;几何选择定理;计数k-集;高维多面体的两个应用;高维中的体积;测度集聚和球面集;嵌入有限度量空间到赋范空间。 读者对象:数学专业的本科生、研究生和相关领域的科研人员。
调和映照是流形间映照能量泛函的临界点,是几何中测地线以及极小曲面概念的自然推广。 《调和映照讲义》分两部分。部分根据作者于1985年在美国加州大学San Diego分艘作关于调和映照课题的系列演讲的内容整理而成。这一部分致力于黎曼面上的调和映照。内容包括Teichmuller空间的紧化,Sacks-Ulenbeck在极小球面的基本工作和不可压缩极小曲面的工作以及运用调和映照来证明的Frankel猜想等。 《调和映照讲义》第二部分的头两章中,讨论了调和映照的正则性理论,其中目标空间可以不是良好的流形。第二部分还包括将调和映照理论用来研究负曲率流形的拓扑性质。《调和映照讲义》最后一章用调和映照方法对的Mostow的刚性定理和Margulis超刚性定理给出概念上和原始证明不同的全新的证明。《调和映照讲义》可作为研究生教材,也可供高等学校数学系及物理系研