本书所研究的几何变换仅限于平面上的合同变换、相似变换和反演变换这三类初等几何变换;本书系统地阐述了这三类几何变换的理论和它们在几何证题方面的应用。阅读本书只需要具有中学数学知识即可;对于阅读几何变换理论有困难的读者,也可以只阅读与几何证题有关的章节。 本书适合大中师生及数学爱好者使用。
地表水特别是集中式饮用水源地水质监测是环境监测系统工作的重点。本实用监测方法立足高效、实用的原则,借鉴外的相关监测方法。综合监测一线同仁的实践经验编辑而成。书中包含地表水常规项目24项、补充项目5项、集中式饮用水源地特定项目80项的现行实用的分析方法。《地表水环境质量监测实用分析方法》可供各级环境监测部门、从事地表水环境监测工作人员使用。
《趣味几何学》是俄罗斯科普作家别莱利曼百余部作品之一。《趣味几何学》不仅是为爱好数学的人而写的,也是为那些还没有发现数学上许多引人入胜的东西的读者写的。许多读者曾在学校里学过几何学,但并不习惯去注意在我们周围世界里各种事物常见的几何关系,不会把学到的几何学知识应用到实际方面去,不知道在生活中间遇到困难的时候、在郊游或露营的时候应用学到的几何学知识。作者把几何学从学校教室的围墙里、从科学的“围城”中,引到户外去,到树林里、到原野上、到河边、到路上,在那里摆脱教科书和函数表,无拘无束地来做几何作业,作用几何知识重新认识美丽的世界。
This is a topology book for undergraduates,and in writing it I have had two aims in mind.Firstly,to make sure the student sees a variety of defferent techniques and applications involving point set,geometric,and algebraic topology,without celving too deeply into any particular area.Secondly,to develop the reader's geometrical insight;topology is after all a branch of geometry. 本书为全英文版。
本书分上下两篇,上篇通俗地阐述了作者所开创的几何解题的“消点 法”,用这个方法可以机械地判定所谓“等式型可构造几何命题”的真假 ,命题成立时还能够产生人容易检验和理解的证明,即可读证明,书中先 引入作者所发展的系统面积方法的两个基本工具,即共边定理和共角定理 ,接着在共边定理的基础上把面积方法算法化,系统地建立了面积消点方 法,此外还进一步指出,消点不限于面积法,在全角法、三角法、向量法 以及复数法的基础上也能建立消点法,下篇则对几何公理体系提出了新的 见解,指出传统的欧几里得公理体系和希尔伯特公理体系的不足,并提出 一个与面积法相适应的平面几何公理体系,证明了这个体系和希尔伯特公 理体系的等价性。 本书可供中学数学教师、师范院校数学教师、数学爱好者、数学奥林 匹克工作者和参赛
本书作者试图通过法门寺地宫出土的宫廷茶具、由唐代宫廷茶具和宫廷茶道的研究,进而对唐代茶业、茶文化的发展展开深入研究。全书分为十章,包括唐和唐以前饮茶的历史发展、法门寺地宫茶具、地宫茶具与宫廷茶风、唐代茶具、唐人制茶和鉴茗技艺、唐人煮茶看火技艺、唐人茶俗、雅士茶风、僧道茶风、唐人饮茶文化的形成和传播。
内容简介 本书研究了反演变换及其性质、圆与反演变换、两圆的互反性等几何知识,系统地阐述了这些几何变换的理论和它们在几何证题方面的应用. 本书写得简明扼要,通俗易懂,引人入胜,是中学生、低年级学生以及他们的教师和几何爱好者的一本很好的参考书.
This is a topology book for undergraduates,and in writing it I have had two aims in mind.Firstly,to make sure the student sees a variety of defferent techniques and applications involving point set,geometric,and algebraic topology,without celving too deeply into any particular area.Secondly,to develop the reader's geometrical insight;topology is after all a branch of geometry. 本书为全英文版。
《数学桥:对高等数学的一次观赏之旅》是一本的数学书。它不是教科书,也不是普及书,而是一本介于这两者之间的“普及性教科书”。它以高中数学为起点,用一种娓娓道来、徐徐展开的方式,向你展示大学数学中的核心内容和亮点,让你欣赏许多令人惊叹的结果,领略它们的自然之美和实用价值。《数学桥:对高等数学的一次观赏之旅》好比一座数学桥,它帮你从以重复性解题操练为基础的高中数学,平安顺利地过渡到以性思想探究为主旨的高等数学。如果你即将或正在学习高等数学,那么《数学桥:对高等数学的一次观赏之旅》将是你学习道路上的好伴侣;如果你已经学完了高等数学,那么不妨也来浏览一下,你很可能会说:“哎呀,原来是这么回事!”
本书探讨了三角形和圆形的几何结构,主要专注于欧氏理论的延伸并详细地研究了许多相关定理。在讨论的数百个定理和推论中,一些已经给出了完整的证明,另一些未证明的用以留作读者练习使用。 本书适合大、中学师生及数学爱好者学习和收藏。
本书是在1996年出版的《常微分方程》(德文)一书的基础上编写而成的,书中主要介绍常微分方程的基础理论。内容包括:可积一阶微分方程,微分方程解的存在性和性,微分方程的初极值问题,边值问题和特征值问题,稳定性与渐进稳定性理论。阅读本书需要具备的计算代数、线性代数及泛函分析的基础知识。适用于高校数学、牧业和计算机科学等相关的本科生和研究生。
《原本》成书于公元前三百年左右,距离两千三百年,《原本》的作者是亚历山德拉的欧基里得(Euclid ofAlexandria),他的生卒年根据推测大概是公元前330~260年,正是马其顿英主亚历山大开始发展势力,开创希腊化文化的初期。《原本》是一本数学著作,章节安排有着严谨的结构,全书由定义、公设、设准、命题(定理)、证明,以及符号和图像所构成,全书共十三卷。 《原本》其实是欧基里得将古希腊数学集大成的著作,包括了希腊科学数学家:泰利斯、毕达哥拉斯、希波克拉提斯等人的成果。导读者翁秉仁教授认为《原本》之所以是经典,是因为欧基里得采用了非常特殊的编纂法,就是推理的方法或逻辑。欧基里得的原创性不是表现四百多个命题的叙述,因为许多命
《数学解题与研究丛书:平面解析几何》是一部高中数学教学参考用书,包括平面解析几何的文章、试题共40篇,系统、详尽地阐述了高中数学解题技巧,有理论、有实践,《数学解题与研究丛书:平面解析几何》注重科学性、系统性和趣味性,每篇文章各自独立成文,所以《数学解题与研究丛书:平面解析几何》可系统性地研读,也可有选择性地阅读.《数学解题与研究丛书:平面解析几何》可作为高三复习备考用书,也可供中学、大学师生及初等数学爱好者研读,或作为高中数学竞赛辅导资料和师范大学数学教材教法方面的教材。
《平面解析几何方法与研究(第2卷)》一书全面系统地介绍了欧氏平面解析几何的有关重要内容,是作者参考了多种有关论著并结合自己的教学经验整理而成的。《平面解析几何方法与研究(第2卷)》对进一步理解平面解析几何基本内容、拓宽知识面都有很大帮助。对于书中的难点和一般解析几何书中不常见到的内容作者都做了严谨而详细地论述,并配备了较多例题。每个例题都具有典型意义,是对正文的重要补充,这些例题对理解重要概念、掌握解析几何方法有重要作用。因此,《平面解析几何方法与研究(第2卷)》是一本有价值的数学教学参考书。
本书全面介绍了Delaunay三角剖分及其对偶图——Voronoi图的相关技术,采用灵活性更好的带权Dela眦v三角/四面体剖分来解决限定三角剖分的问题,所得到的三角网格具有同Delaunay三角网格相似的优良性质。建立起了一套三角形/四面体的质量评价体系,并给出了三角形/四面体的质量控制的算法。对计算几何中影响算法健壮性的一些因素进行了研究和分析。最后,给出了Ddaunay三角剖分可视化应用的一些实例。 本书可供计算机及其相关领域的科研人员及高等学校相关专业师生参考使用。
本书在假定读者不具备拓扑学知识的前提下,介绍了微分几何的主要内容,书中主要讲解空间中的曲线论和曲面论、二维黎曼流形、微分流形、微分形式、Lie导数、张量理论、协变导数和曲率张量,力图将古典的微分几何和现代微分几何结合在一起讲给理工科的学生,书中给出了很多例子,试图利用这些例子使学生很好地了解几何概念的含义!书中也给出了一些新的内容,比如,椭球面上的测地线、KdV方程的推导、图形极小曲面的极小性等,以此来强调经典内容和当代热点数学问题之间的关系,同时,书中安排数量的习题,供读者练习。 本书可供理工科一年级以上的大学生、研究生以及对数学有兴趣的学者阅读。
《矩阵论(第2版)》比较全面、系统地介绍了矩阵的基本理论、方法及其应用,全书分上、下两篇,上篇为基础篇,下篇为应用篇,共8章,分别介绍了矩阵的几何理论(包括线性空间与线性算子,内积空间与等积变换),λ矩阵与若尔当标准形,矩阵的分解,赋范线性空间与矩阵范数,矩阵微积分及其应用,广义逆矩阵及其应用,几类特殊矩阵与特殊积(如非负矩阵与正矩阵、循环矩阵与素矩阵、矩阵和双矩阵、单调矩阵、M矩阵与H矩阵、T矩阵与汉克尔矩阵以及克罗内克积、阿达马积与反积等),前7章每章均配有数量的习题.附录中还给出了15套模拟自测试题,所有习题和自测题(约1300题)的详细解答,即将由清华出版社另行出版。 《矩阵论(第2版)》可作为理工科各专业研究生的学位课程,也可作为理工科和师范类院校高年级本科生的选
《矩阵论(第2版)》比较全面、系统地介绍了矩阵的基本理论、方法及其应用,全书分上、下两篇,上篇为基础篇,下篇为应用篇,共8章,分别介绍了矩阵的几何理论(包括线性空间与线性算子,内积空间与等积变换),λ矩阵与若尔当标准形,矩阵的分解,赋范线性空间与矩阵范数,矩阵微积分及其应用,广义逆矩阵及其应用,几类特殊矩阵与特殊积(如非负矩阵与正矩阵、循环矩阵与素矩阵、矩阵和双矩阵、单调矩阵、M矩阵与H矩阵、T矩阵与汉克尔矩阵以及克罗内克积、阿达马积与反积等),前7章每章均配有数量的习题.附录中还给出了15套模拟自测试题,所有习题和自测题(约1300题)的详细解答,即将由清华出版社另行出版。 《矩阵论(第2版)》可作为理工科各专业研究生的学位课程,也可作为理工科和师范类院校高年级本科生的选修课,并可