平面几何是一门具有特殊魅力的学科,主要是训练人的理性思维的.《平面几何天天练(中卷·基础篇)(涉及圆)》以天天练为题,在每天的练习中,突出重点,使学生在练习中学会并吃透平面几何知识。 《平面几何天天练(中卷·基础篇)(涉及圆)》适合初、高中师生学习参考,以及专业人员研究、使用和收藏。
本书是学习黎曼-芬斯勒几何(简称芬斯勒几何)的入门教材。全书共十章,作者以较大的篇幅,即前五章介绍了芬斯勒流形、闵可夫斯基空间(即芬斯勒流形的切空间)上的几何量、陈联络,以及共变微分和第二类几何量、黎曼几何不变量和弧长的变分等基本知识和工具。在有了上述宽广而坚实的基础以后,论述芬斯勒几何的核心问题,即射影球丛的几何、三类几何不变量的关系、具有标量曲率的芬斯勒流形、从芬斯勒流形出发的调和映射、局部射影平坦和非局部射影平坦的芬斯勒度量等。它们既是当前十分活跃的研究领域,也是作者研究成果的领域之一,含有作者独到的见解。本书每章内都附有一定数量的习题,书末附有习题解答和提示,便于读者深入学习或自学。 本书可作为综合性大学、师范院校数学系与物理系高年级本科生和研究生的教材或教学参考书,也可
本书为三角形趣谈,全书共分10章,每章后配有练习题,书后附有习题参考答案。本书适合初、高中学生,初、高中数学竞赛选手及教练员使用,也可作为高等师范院校、教师进修学院数学专业开设的“竞赛数学”课教材及*、省级骨干教师培训班参考使用。
本书是作者在复旦大学数学系主讲 空间解析几何 课程20多年的结晶,全书共3章,*章,直线与平面;第二章,曲线与二次曲面;第三章,非欧几何,包括球面三角形、射影平面几何与双曲平面几何等内容. 书中许多定理和事实是重新证明过的,有些章节完全是作者自己编写的. 每章附有一定数量的习题,其中不少习题是复旦大学数学系 空间解析几何 课程的考题. 本书可作为综合大学数学和应用数学专业 空间解析几何 课程的教材,也可作为教师教学参考用书.
几何三大难题困扰了人类2000多年,让许多伟大的数学家为之辛勤地思考并耗费大量的精力,人类也在解决他们的过程中发展了新的数学。因此了解这些问题以及了解这些问题是如何解决的,对学数学的人和对数学感兴趣的中学生来说是很有意义的。本书以很少的篇幅,从历史的发展的角度展开,穿插了一些历史资料和生动的故事。另外作者设计了一系列的习题,让读者参与到问题的解决中去。本书自1969年出版以来,直到现在仍是一本很受读者欢迎的读物。本书适合对此感兴趣的大学生,中学教师,以及有较好代数和几何基础的中学生等阅读。
本书是复流形的一大经典(全英文版),也是陈省身先生著名的著作之一。该书是1995年版复流形理论第2版的修订版。本书以作者在California大学的讲义和Canadian数学学会的研讨班为蓝本,全面地讲述复流形理论在代数几何、复函数理论、微分算子等理论中的重要作用。本书的*特点是复流形理论的微分几何方法是在S.-S.Chern著作的影响下发展起来的,作为第2版对该理论的引入和表示很完美,被众多数学界的学者、专家所引用,是学习Riemann几何的一本理想参考书。
这本小册子也是一本问题集。前面有8章,每章都有许多例题与问题, 还有一章研究问题,一章未解决的问题。 章与章之间无前因后果的关系,而且除第1章(系统介绍一个问题)外,各章内部的例题亦无太多的联系。实际上组合数学,特别是组合几何,并无统一的方法,不同的问题往往需要进行不同的处理。这 不意味组合几何是一盘散沙,这各具个性的问题与方法,恰好形成组合几何鲜明的特点。正因为有众多的问题,而且没有固定的方法,组合几何吸引了许多数学家(包括专业与业余两方面)的浓厚兴趣。
如在变分法的进一步发展范畴中观察,辛几何的公理系统范围毕竟太窄,舍弃了很多东西。因此就要破茧,要向更广阔天地拓展。以下按前述辛的4点局限性,逐个讲述。本书破茧只讲简单基本的内容,只讲基本思路而不追求详细成果。不求高深,而求简明、易懂、实用。
《几何画板课件制作教程(第三版)》主要以范例的形式全面介绍新版几何画板软件的新功能、 新特点,并结合数学课件特点系统地介绍课件设计开发的方法和技巧。 结合开发过程挖掘几何画板的潜在功能及技巧,创意出许多新的知识内容表现方式和方法,将一个二维工具推广到三维空间的应用,极大地丰富了几何画板的创作空间。另外随书光盘中收录了大量的课件素材,《几何画板课件制作教程(第三版)》各章配有许多实例,并附有习题,供读者参考。
本书内容是“工程图学”的基础。该书适合于工科高等院校各专业,也适合于综合性大学、电大、职业技术学院、成人教育学院理工专业。 该书可作为“画法几何与土建制图”、“画法几何与建筑阴影透视”、 “画法几何与机械制图”课程画法几何部分的教科书。也可作为工程技术人员,图学爱好者自学参考书。 与本书配套的由罗敏雪主编,吉红、张正彬参编的《画法几何习题集》,由中国科学技术大学出版社同时出版。
本书是复流形的一大经典(全英文版),也是陈省身先生的著作之一。该书是1995年版复流形理论第2版的修订版。《复流形(第2版)》以作者在California大学的讲义和Canadian数学学会的研讨班为蓝本,全面地讲述复流形理论在代数几何、复函数理论、微分算子等理论中的重要作用。《复流形(第2版)》的优选特点是复流形理论的微分几何方法是在S.-S.Chern著作的影响下发展起来的,作为第2版对该理论的引入和表示很完美,被众多数学界的学者、专家所引用,是学习Riemann几何的一本理想参考书。
本书是作者从事高等几何教学20余年经验的结晶,主要内容包括射影平面、射影变换、变换群观点、二次曲线理论、几何学简史等。本书科学体系严谨,内容精炼,深入浅出、语言生动,图文并茂,易教易学。同时,本书还配备了作者授课时用的电子教案,以供广大教师、学生参考。 本书可作为高等院校数学专业本科生和专科生的教材,亦可供有关人员参考。
本书共分八章,力求语言和叙述简洁精炼。章简述了微分流形的基本内容,是学习后面章节的基础。第二章到第六章是黎曼几何的。依本人的兴趣,第七章讲子流形理论,第八章讲复几何。希望所著之书的内容,既在基础理论上自成体系,又能给读者奠定坚实的基础。
作者方运加以通俗易懂的语言阐述了坐标的概念,从一些简单的几何问题人手,讲述了利用坐标法分析问题与解决问题的基本方法,对比了坐标法、代数方法与几何方法在解题思路、方法的不同特点。在介绍一些基础性的以及若干较复杂但饶有趣味的问题在应用坐标法解题的过程中,使读者清楚地看到坐标概念是代数学与几何学结合的桥梁与一个学科分支——解析几何学——的产生和发展的必然性,并了解它成为强有力的数学工具的基本内涵。 《坐标法》是读者学习解析几何以及高等数学的一本启蒙书,它无论在学习与掌握坐标法还是在建立新的数学观念方面,以及对中学生的数学素养的提高,都会起到良好的作用。 本书对大学、专科学校学生也有参考价值。
全书共分6章,包括三角形五心的概念和性质,三角形五心的坐标表示、向量形式及应用,三角形五心间的距离,圆内接四边形中三角形的五心性质及应用,三角形五心性质的综合应用等内容,每章节后配有习题,书后附有习题参考答案。本书适合于初、高中学生,初、高中数学竞赛选手及教练员使用,也可作为高等师范院校、教育学院、教师进修学院数学专业开设的“竞赛数学”课座教材及*、省级骨干教师培训班参考使用。
《立体几何中的三视图》共11讲,系统的讲述了直观图、三视图。内容包括作图的基本知识、常用的几何作图方法、基本几何体及其直观图的作法、正投影及三视图、点线面的投影、基本几何体的三视图、物体的表面交线、简单组合体三视图的画法、怎样由视图想象出其实物的形状、徒手画图、高考热点--三视图。 《立体几何中的三视图》取材适中,注重观察能力、形象思维能力和空间想象能力的培养,突出方法,结构紧凑,表述清楚,易教易学。 《立体几何中的三视图》可作为高等师范院校数学与应用数学专业教材及中学数学新课程教师培训教材,也可作为中学数学教师教学参考用书。对几何爱好者来讲,也同样是一本有益的读物。
本书内容包括:章张量代数,介绍了仿射空间和仿射坐标系,研究了张量代数的性质;第二章张量分析,讨论了曲线坐标的张量,研究了Riemann空间的张量微积分及Riemann-Christoffel曲率张量等;第三章曲面张量,讨论了曲面张量的微分和导数、测地线、半测地线及S-族坐标系等;第四章张量的应用。本书可作为理工科硕士、博士研究生相关基础数学课程的教材及广大科技工作者的参考书。
本书从一道国际数学奥林匹克候选题谈起,引出毕克定程.全书介绍了毕克定理、毕克定理和黄金比的无理性、精点多边形和数三章以及闵嗣鹤论、空间格点三角形的面积、从施瓦兹到毕克到阿尔弗斯及其他、美国中学课本中的有关平面格点的内容四个附录.阅读本书可全面地了解毕克定理以及毕克定理在数学中的应用. 本书适合高中生、大学生以及数学爱好者阅读和收藏。
本书概要地讲述了《张量分析及在力学中的应用》的各章内容之精华,并给出了该书的全部习题全解。全书共分9章,第1、2章介绍张量的基础知识,第3~6章介绍张量代数、张量分析和黎曼空间的曲率,第7、8章介绍张量分析在弹性力学和损伤力学中的应用,第9章介绍Matlab/Mathematica在矩阵和张量演算中的应用。本书可作为大学数学、物理、力学、天文、航空、航天、土木、水利、交通、信息和管理学科的研究生和高年级大学生的参考教材,也可供相关专业的研究人员、工程技术人员和青年教师自学参考。