庄楚强、何春雄编*的《应用数理统计基础(第4 版)》介绍经典的数理统计理论与方法,内容包括初等概率论知识的复习、抽样分布、参数估计、假设检验、方差分析和试验设计,还简要介绍数据挖掘及统计学习、R软件等较为现代的统计方法和工具。书中有较多例题并附有例题求解的R软件参考程序,各章配有习题,书末附有习题答案。 《应用数理统计基础(第4版)》适用于了解概率论基础知识和具有使用计算机软件基本经验的读者阅读。可作为高等院校非数学专业硕士研究生数理统计课程的参考教材,也可供在自然科学、管理科学、社会科学、经济与金融科学等诸多研究领域中用到统计科学的科研工作者参考。
道恩·格里菲思著的《深入浅出统计学》具有“深入浅出”系列的一贯特色,提供符合直觉的理解方式,让统计理论的学习既有趣又自然。从应对考试到解决实际问题,无论你是学生还是数据分析师,都能从中受益。本书涵盖的知识点包括:信息可视化、概率计算、几何分布、二项分布及泊松分布、正态分布、统计抽样、置信区间的构建、假设检验、卡方分布、相关与回归等等,完整涵盖AP考试范围。本书运用充满互动性的真实世界情节,教给你有关这门学科的所有基础,为这个枯燥领域的学习带来鲜活的乐趣,不仅让你充分掌握统计学的要义,更会告诉你如何将统计理论应用到日常生活中。
同调代数是本世纪四十年代发展起来的,现在已成为代数学中的重要方向之一,同调代数是代数学中研究群、环、模理论的重要工具,也是研究数学中其他分支如:代数几何学、拓扑学、微分几何、函数论、代数数论的有效工具。《现代数学基础丛书·典藏版26:同调代数》阐述同调代数的基本理论与方法,包括范畴、模、同调、同调函子与一些环、谱序列等五章。另外还有两个附录,阐述正则局部环的理论与Serre问题。《现代数学基础丛书·典藏版26:同调代数》论证严格,起点不太高,但较深入,可供学过近世代数的大学生、研究生及数学工作者参考。
由于 概率论与数理统计 既有明显而广泛的应用背景,又有严密的理论分析,初学者往往难以理解和掌握,诸如互不相容、独立和等可能性等条件往往都隐含在问题的叙述中,导致学生往往觉得掌握了基本理论和方法,但解题时又觉得无从下手.本书与《概率论与数理统计》(何春雄等编,2012年2月版)的教材配套,每章都分基本内容、基本要求、基本知识提要、疑难分析、典型例题选讲及习题详解等6部分编写,以期帮助学生既掌握基本概念、基本理论和方法,又具有运用该课程知识解决有关实际问题的能力。主要内容包括:事件与概率;变量与概率分布;向量及其分布;变量的数字特征;大数定律与中心极限定理。
是一部现代数学名著,一直受到数学界的推崇。作为Rudin的分析学经典著作之一,本书在西方各国乃至我国均有着广泛而深远的影响,被许多高校用做数学分析课的必选。本书涵盖了高等微积分学的丰富内容,最精彩的部分集中在基础拓扑结构、函数项序列与级数、多变量函数以及微分形式的积分等章节。第3版经过增删与修订,更加符合学生的阅读习惯与思考方式。 本书内容相当精练,结构简单明了,这也是Rudin著作的一大特色。 与其说这是一部教科书,不如说这是一部字典。
《测度与概率(第2版)/普通高等教育“十一五”规划教材·数学与应用数学基础课系列教材》论述测度论和以测度为基础的概率论的基本知识和方法,包括集及其势、距离空间、测度与概率、可测函数与随机变量、积分与数学期望、乘积测度与独立、Radon-Nikodym定理与条件期望、概率极限理论等。《新世纪高等学校教材·数学与应用数学基础课系列教材:测度与概率(第2版)》的特点是读者不必学习实变函数论而学习测度论;测度论与概率论的基本内容紧密结合而更有利于理解二者的关系及其实质;在《新世纪高等学校教材·数学与应用数学基础课系列教材:测度与概率(第2版)》的基本目标下,尽可能使内容现代化;《新世纪高等学校教材·数学与应用数学基础课系列教材:测度与概率(第2版)》文字通畅、条理清楚、论述严谨、便于学习;每节后都配有较多的
《博学·经济学系列:统计学原理(第7版)》共分八章,即绪论、统计调查与整理、综合指标、动态数列、统计指数、抽样调查、相关与回归分析、国民经济核算。这次修订,主要对各章的练习题作了调整和增补,改写了第五章、第六章、第七章、第八章,同时对书中的统计资料作了更新。前六版受到读者的广泛好评。 《博学·经济学系列:统计学原理(第7版)》的特点是实用、简明,每章后有练习题并附有习题解答。 《博学·经济学系列:统计学原理(第7版)》适合各大专院校经济、管理、金融等专业师生。
这本经典的概率论教材通过大量的例子系统介绍了概率论的基础知识及其应用,主要内容有组合分析、概率论公理、条件概率、离散型随机变量、连续型随机变量、随机变量的联合分布、期望的性质、极限定理和模拟等,内容丰富,通俗易懂.各章末附有大量的练习,分为习题、理论习题和自检习题三大类,并在书末给出自检习题的全部解答. 本书是概率论的入门书,适合作为数学、统计学、经济学、生物学、管理学、计算机科学及其他各工学专业本科生的教材,也适合作为研究生和应用工作者的参考书.
是一部现代数学名著,一直受到数学界的推崇。作为Rudin的分析学经典著作之一,本书在西方各国乃至我国均有着广泛而深远的影响,被许多高校用做数学分析课的必选教材。本书涵盖了高等微积分学的丰富内容,最精彩的部分集中在基础拓扑结构、函数项序列与级数、多变量函数以及微分形式的积分等章节。第3版经过增删与修订,更加符合学生的阅读习惯与思考方式。 本书内容相当精练,结构简单明了,这也是Rudin著作的一大特色。 与其说这是一部教科书,不如说这是一部字典。
《数学与现代科学技术丛书6:多尺度模型的基本原理(英文版)》系统介绍有关多尺度建模的基本问题,主要介绍其基本原理而非具体应用。前四章介绍有关多尺度建模的一些背景材料,包括基本的物理模型,例如,连续统力学、量子力学,还包括一些多尺度问题中常用的分析工具,例如,平均方法、齐次化方法、重正规化群法、匹配渐近法等,同时,还介绍了运用多尺度思想的经典数值方法。接下来介绍一些更前沿的内容:多物理模型的实例,即明确使用多物理渐近的分析模型,当宏观经验模型不足时,借助微观模型,使用数值方法来获取复杂系统的宏观行为规律,使用数值方法将宏观模型和微观模型结合起来,以便更好地解决局部奇点、亏量及其他问题;最后一部分主要介绍三类具体问题:带多尺度系数的微分方程、慢动力和快动力问题以及其他特殊问题。
本书作为第四版,在第三版的基础上增加了一些由新技术产生的新的分析计算方法,并加入了矩阵、线性代数等一些基础计算方法。内容上系统阐述了有限单元法的基本原理及其工程应用,包括杆系结构,弹性力学平面问题,单元分析,整体分析,平面问题高次元,弹性力学轴对称问题,弹性力学空间问题,形函数、坐标变换、等参数单元与无线单元,各种平面与空间单元的比较、应用实例,弹性薄板,弹性薄壳,轴对称壳,弹性厚板和厚壳,流体力学问题,热传导问题,非线性有限元分析方法,塑性力学问题,混凝土徐变、一般黏弹性及黏塑性问题,弹性稳定问题,大位移问题,断裂力学问题,结构动力学问题,岩石力学问题,土力学问题,混凝土与钢筋混凝土结构,工程反分析与数值监控,网络自动生成、误差估计与自适应技术,矩阵,线性代数方程组,变分
戴建生编著的这本《机构学与机器人学的几何基础与旋量代数》起始于直线几何与线性代数,自然过渡到旋量代数与有限位移旋量,紧密联系李群、李代数、对偶数、Hamilton四元数、Clifford对偶四元数等现代数学基础,首次全面、深入地阐述旋量代数在向量空间与射影几何理论下的演变与推理,提出旋量代数与李代数、四元数代数以及有限位移旋量与李群之间的关联理论,展现出旋量理论与经典数学以及现代数学的内在关联,总结提炼出许多论证严密、意义明确的引理、定理与推论,由此阐述篇“几何基础、旋量代数与李群、李代数”,给出机构学与机器人学的几何基础与数学理论。 在第二篇“旋量系理论及机构约束与自由运动”中,运用集合论与线性代数等经典数学推导并揭示旋量系、旋量多重集及其阶数与基数的本质内涵,提出并阐述旋量系关联关系理论
近些年随着技术的快速发展,多组学数据越来越广泛地应用在了生物及医学研究领域,这些丰富的实验数据成为了精准医疗的重要支撑,但同时也给统计学家提出了严峻的考验,如何处理分析这些数据成了重要的研究课题。本书主要面向复杂疾病中产生的复杂数据进行统计建模和计算,有效整合多组学数据 ,对复杂疾病的机理认识和风险预测具有重要的意义。本书结构合理、概念清晰,可作为对统计遗传、生物统计等方面感兴趣的研究人员的学习资料。
《有限元方法卷:基本原理(第5版)》为有限元方法系列专著的卷——基本原理,涵盖了有限元分析的一些基础领域,同时还涉足有限元分析的前沿内容。本卷共20章,内容广泛,既强调有限元的数学力学原理,又结合工程实际背景。该书的版完成于1967年,到现在已出版第5版,历时40余年,成为有限元领域的经典著作,已有几代从事计算力学的学者从该书中受益。本书可作为高年级本科生和研究生的课程学习参考书,也是从事有限元研究的科研人员和工程技术人员的重要学习文献。
本书系统讲述统计中多元分布的基本理论和常用的多元数据分析方法,多元分布理论包括Wishart分布、T2分布、A分布、多元Beta分布、多元正态的参数估计和假设检验及一般多元分布的参数估计和假设检验理论,多元数据分析方法包括多元线性回归模型、判别分析、主成分分析、因子分析、相应分析、聚类分析、典型相关分析和多维标度法,既强调作为一个学科分支的理论系统性,对一些基本定理给出了必要而简明的数学推导,又注重数据分析方法的多样性,对各方法从背景、数学工具的使用、计算步骤到应用技巧及各种方法之间的联系,都有较详细的阐述,包括近期的一些新发展,书中给出一些有启发性的实例和习题,书末附录给出一些代数补充知识。 本书可作为高等院校数学系、数理统计或统计系、计量经济系、生物统计系等有关学科专业的高年级本科生、
本书是由一位数学大师倾注了极大的热情和精力,为有志于认真、系统地学习微积分的学生撰写的一本教材。书中内容涉及多元微积分,包括:多元函数,多元微分、多元积分的法则,以及曲线和曲面。作者首先使用积分记号,从Arzelà定理导出微积分定理,然后详细介绍定义在矩形上的多元函数的积分和一般情况下的多元函数的积分,最后导出曲线长度公式和曲面面积公式。 本书逻辑严密,采用的大量图示增强了表述的直观性,可作为高等院校本科和专科学生学习微积分的教材或参考书。
《数学思想概论(第4辑):数学中的归纳推理》将从数学的角度讨论推断所依赖的推理模式。虽然这种推理不能成为严格的数学证明,但这种推理依然具有逻辑性的,我们称这种推理模式为归纳推理。可以这样描述归纳推理的定义:从经验和概念出发,按照某些法则所进行的、前提与结论之间有或然联系的推理,比较演绎推理的定义可以看到,归纳推理与演绎推理的出发点是根本不同的.特别是,归纳推理比演绎推理要灵活得多,这是因为:在推理过程中,“概念”是必要的,但不需要抽象为严格的定义;“法则”是必要的,但不需要确立为严格的规定;前提与结果之间的“联系”是必要的,但这种联系可以是或然的.正因为归纳推理具有这种灵活性,才可能从事物(事情和实物)的现实出发,对事物的过去或者未来进行推断。
《时间序列分析:单变量和多变量方法(第2版)》不仅对单变量与多变量时间序列的时域和频域分析提供了一个全面介绍,而且在书中包含了许多单变量和多变量时问序列模型的新进展,如逆自相关函数、扩展样本自相关函数、干预分析及干预探测、向量自回归移动平均模型、偏滞后自相关矩阵函数、局部过程、状态空间模型、卡尔曼滤波、非季节和季节模型的单位根检验等许多内容。《时间序列分析:单变量和多变量方法(第2版)》结合大量的应用实例说明时间序列分析方法的应用,极大地方便了读者对这些方法的学习和理解。
本书追溯了统计学如何误入歧途的历史(300多年),从十七世纪数学家雅各布?伯努利的开创性工作开始,一直到赌博、天文学和遗传学中对统计学的运用。作者讲述了互相竞争的统计学派之间的争斗,探讨了催生该学科的令人惊讶的人类问题(种族主义)以及使其脱轨的所有人类缺点。例如,十九世纪和二十世纪里有影响力的人发展出一种他们声称是纯粹客观的统计方法,以压制对其政治议程(包括优生学)的批评。作者对概率的数学和逻辑进行了清晰的阐述,深入浅出地将较为复杂的概念介绍给对统计方法感兴趣的读者,这些统计方法实质上构成了我们对世界的理解。他认为,我们需要采取贝叶斯方法——即在用不 信息进行推断时纳入先验知识,以解决危机。本书的内容横跨数学、哲学和文化,解释了为什么我们使用数据的方式出了问题,以及如何解决这个问