这本经典的概率论教材通过大量的例子系统介绍了概率论的基础知识及其应用,主要内容有组合分析、概率论公理、条件概率、离散型随机变量、连续型随机变量、随机变量的联合分布、期望的性质、极限定理和模拟等,内容丰富,通俗易懂.各章末附有大量的练习,分为习题、理论习题和自检习题三大类,并在书末给出自检习题的全部解答。 本书是概率论的入门书,适合作为数学、统计学、经济学、生物学、管理学、计算机科学及其他各工学专业本科生的教材,也适合作为研究生和应用工作者的参考书。 2步获取导学视频: ①微信视频号关注 IT阅读排行榜 ②点击 直播回放 栏,上滑寻找
《深入浅出统计学》具有 深入浅出系列 的一贯特色,提供符合直觉的理解方式,让统计理论的学习既有趣又自然。从应对考试到解决实际问题,无论你是学生还是数据分析师,都能从中受益。本书涵盖的知识点包括:信息可视化、概率计算、几何分布、二项分布及泊松分布、正态分布、统计抽样、置信区间的构建、假设检验、卡方分布、相关与回归等等,完整涵盖AP考试范围。本书运用充满互动性的真实世界情节,教给你有关这门学科的所有基础,为这个枯燥的领域带来鲜活的乐趣,不仅让你充分掌握统计学的要义,更会告诉你如何将统计理论应用到日常生活中。
本书是一本非数学专业主要是文科及艺术类专业的数学教材,讲述方式活泼,案例贴近生活,读者可以在轻松学习中体会数学乐趣和意义。全书分为三大部分:归纳和演绎、逻辑和数;代数和几何;概率统
由美国当代著名统计学家L.沃塞曼所著的《统计学完伞教程》是一本几乎包含了统计学领域全部知识的优秀教材,本书除了介绍传统数理统计学的全部内容以外,还包含了Bootstrap方法(白助法)、独立性推断、因果推断、图模型、非参数同归、正交函数光滑法、分类、统计学理论及数据挖掘等统计学领域的新方法和技术.本书不但注重概率论与数理统计基本理论的阐述,同时还强调数据分析能力的培养.本书中含有大量的实例以帮助广大读者快速掌握使用R软件进行统计数据分析。
同调代数是本世纪四十年代发展起来的,现在已成为代数学中的重要方向之一,同调代数是代数学中研究群、环、模理论的重要工具,也是研究数学中其他分支如:代数几何学、拓扑学、微分几何、函数论、代数数论的有效工具。《现代数学基础丛书·典藏版26:同调代数》阐述同调代数的基本理论与方法,包括范畴、模、同调、同调函子与一些环、谱序列等五章。另外还有两个附录,阐述正则局部环的理论与Serre问题。《现代数学基础丛书·典藏版26:同调代数》论证严格,起点不太高,但较深入,可供学过近世代数的大学生、研究生及数学工作者参考。
本书系统讲述统计中多元分布的基本理论和常用的多元数据分析方法,多元分布理论包括Wishart分布、T2分布、A分布、多元Beta分布、多元正态的参数估计和假设检验及一般多元分布的参数估计和假设检验理论,多元数据分析方法包括多元线性回归模型、判别分析、主成分分析、因子分析、相应分析、聚类分析、典型相关分析和多维标度法,既强调作为一个学科分支的理论系统性,对一些基本定理给出了必要而简明的数学推导,又注重数据分析方法的多样性,对各方法从背景、数学工具的使用、计算步骤到应用技巧及各种方法之间的联系,都有较详细的阐述,包括近期的一些新发展,书中给出一些有启发性的实例和习题,书末附录给出一些代数补充知识。 本书可作为高等院校数学系、数理统计或统计系、计量经济系、生物统计系等有关学科专业的高年级本科生、
本书是由一位数学大师倾注了极大的热情和精力,为有志于认真、系统地学习微积分的学生撰写的一本教材。书中内容涉及多元微积分,包括:多元函数,多元微分、多元积分的法则,以及曲线和曲面。作者首先使用积分记号,从Arzelà定理导出微积分定理,然后详细介绍定义在矩形上的多元函数的积分和一般情况下的多元函数的积分,最后导出曲线长度公式和曲面面积公式。 本书逻辑严密,采用的大量图示增强了表述的直观性,可作为高等院校本科和专科学生学习微积分的教材或参考书。
《时间序列分析:单变量和多变量方法(第2版)》不仅对单变量与多变量时间序列的时域和频域分析提供了一个全面介绍,而且在书中包含了许多单变量和多变量时问序列模型的新进展,如逆自相关函数、扩展样本自相关函数、干预分析及干预探测、向量自回归移动平均模型、偏滞后自相关矩阵函数、局部过程、状态空间模型、卡尔曼滤波、非季节和季节模型的单位根检验等许多内容。《时间序列分析:单变量和多变量方法(第2版)》结合大量的应用实例说明时间序列分析方法的应用,极大地方便了读者对这些方法的学习和理解。
本书展示如何用Python程序将不同格式的数据处理和分析任务规模化和自动化。主要内容包括:Python基础知识介绍、CSV文件和Excel文件读写、数据库的操作、示例程序演示、图表的创建,等等。
本书介绍非参数统计的基本概念和方法, 其内容包括预备知识、U 统计量、基于二项分布的检验、列联分析、秩检验、检验的功效与渐近相对效率、概率密度估计、非参数回归. 每一章内容都着重阐述非参数统计推断的一般处理技术和原则, 并给出一些典型例子. 各章后面的习题侧重于应用. 本书的特点是侧重于介绍非参数统计在各应用领域中的常用方法,尽可能简化公式推导并淡化理论证明. 此外, 本书有选择地安排一些模拟计算和实际数据分析, 其主要程序放在附录A 中.
本书是研究生《矩阵分析与应用》的配套用书,由矩阵与线性方程组、特殊矩阵、矩阵的变换与分解、梯度分析与化、奇异值分析、总体小二乘方法、特征分析、子空间分析与跟踪、投影分析共9章组成。每章均包含两部分内容:部分总结复习该章所涉及的主要理论知识,第二部分为习题的详细解答。所选习题分为基础题型、综合题型、应用题型。这些习题可以帮助读者巩固加深对基础概念的理解,提高综合运用知识的技能和解决实际应用问题的能力。本书可供电子、通信、自动化、计算机等学科的研究生学习辅导之用,也可供相关专业和领域的教师和科研人员参考。