全书共分三篇。篇介绍了21种平面几何证明方法;第二篇介绍了14种常见问题的求解思路;第三篇介绍了几何图形的基本性质,如三角形中的巧合点问题、三角形中的数量及位置关系问题等。本书在归纳、总结平面几何的概念、定理、公式的基础上,更贴近数学竞赛的命题方向、命题内容。适合于初高中学生尤其是数学竞赛选手、初高中数学教师和中学数学奥林匹克教练员使用,也可作为高等师范院校、教育学院、教师进修学院数学专业开设的“竞赛数学”课程教材及。省级骨干教师培训班参考用书。
本书系统地介绍了抽象代数这一重要数学分支的最基本的内容,其中包括群论、环论与域论。在域论这一章中还比较全面地介绍了有限Galois理论,书中还配备了数量、难易程度不一的习题,习题均有解答或提示,书后有附录。 本书可供综合性大学、师范大学数学系学生阅读,可作为教材,亦可供理科各系以及信息、通讯工程专业的大学生、研究生及老师参考。
在社会科学中,现代稳健及耐抗性回归方法还不太为人所知。这些方法之所以被称为“现代方法”,是因为它们通常属于密集型计算,这是当前很多依赖今天的高速电脑的统一方法的一个特征。罗伯特·安德森编著的《现代稳健回归方法》通过一套统一的符号系统,介绍了不同来源的多种稳健回归方法,以及它们彼此之间的联系。在主要统计软件如SAS和Stata已经采用这些回归方法的情况下,《现代稳健回归方法》显得非常及时。
《大学数学:概率论与数理统计(第二版)》注重体现工程实际应用背景且注意为现代概率论与数理统计新知识留有接口,同时精简、压缩一些传统内容,淡化计算技巧的训练,加强理论基础的培养;重新组织、精选了例题及习题,使之更有利于培养工科学生利用概率统计方法解决和分析工程实际问题。 《大学数学:概率论与数理统计(第二版)》内容包括随机事件与概率、条件概率与独立性、随机变量及其分布、多维随机变量及其分布、随机变量的数字特征与极限定理、数理统计的基本概念、参数估计、假设检验、单因素试验的方差分析及一元正态线性回归等九章,前6章配备了拓展例题,对其理论与方法作适当的加深和拓广。附录介绍了如何使用MATLAB软件处理概率统计问题。《大学数学:概率论与数理统计(第二版)》适合本科院校工科各专业学生使用,