本书根据作者多年的教学改革实践修订而成,内容包括*事件与概率、离散型*变量及其分布、连续型*变量及其分布、*变量的数学特征、*变量序列的极限、现代概率论基础简介、数理统计的基本概念、参数估计、假设检验、回归分析与方差分析。书中各章附有相当数量的习题,书末附有习题的参考答案,供读者查阅。本书在*制定的教学大纲的基础上,紧扣硕士研究生入学考试大纲,并以此规范概率统计中的术语与记号。
本书是数理统计入门级的教材,作为基础课的教材,本次修订我们修改了版中的不当之处,删去了U统计量、线性估计、构造置信限等内容,选择点估计、区间估计、参数检验和分布检验4个基本的统计问题作为本书主要内容,中间插入贝叶斯统计的一些观念和方法。全书5章内容,把统计量和抽样分布等基本概念归入第1章,为年轻读者进入统计学的研究和应用打下扎实的基础
庄楚强、何春雄编*的《应用数理统计基础(第4 版)》介绍经典的数理统计理论与方法,内容包括初等概率论知识的复习、抽样分布、参数估计、假设检验、方差分析和试验设计,还简要介绍数据挖掘及统计学习、R软件等较为现代的统计方法和工具。书中有较多例题并附有例题求解的R软件参考程序,各章配有习题,书末附有习题答案。 《应用数理统计基础(第4版)》适用于了解概率论基础知识和具有使用计算机软件基本经验的读者阅读。可作为高等院校非数学专业硕士研究生数理统计课程的参考教材,也可供在自然科学、管理科学、社会科学、经济与金融科学等诸多研究领域中用到统计科学的科研工作者参考。
20世纪以来,概率论逐渐渗入到自然科学、社会科学以及人们的日常生活中。无论是在研究领域,还是在教育领域,它愈来愈成为重要的学科之一。在概率论发展历史上,18、19世纪之交法国科学家拉普拉斯具有特殊的地位。 拉普拉斯在他的纯粹与应用数学的众多严格的学术著作之外,还出版了为普通读者写的两篇通俗文章,《关于概率的哲学随笔(双语版)》就是其中的一篇,它构成了《拉普拉斯全集》第7卷中的巨著《概率的分析理论》的引言。 《关于概率的哲学随笔(双语版)》的意图就是让读者不借助较深的数学知识就能了解概率的原理,作者本质上将数学对象以非数学的面貌呈现,用大众化的语言详细论述当时概率论的原理和一般结论。 拉普拉斯概率理论在19世纪的概率论发展史上占据了中心和统治地位,对19世纪的概率论的发展产生了
由夏宁茂等编著的《概率论与数理统计》是培养学生利用*思维模式看待和处理*现象的一门重要数学基础课程。 通过模拟、函数计算及程序调用,把Excel工具广泛使用于概念的引进和数值计算,帮助学生形象理解新概念,直达核心处理思想;现代概念的描述性融入,现代概率论中的基本概念,例如:“可测性”、“概率空间变换”、“条件数学期望”、“期望积分平均”等科普描述性的引进,可使学生缩短与近代概率论之间的距离;教材重视基本概念与方法,又强调*处理的思想,通过借用MBA的案例分析方法,引导学生灵活运用所学知识,掌握*处理的基本过程;概率统计前后呼应、相互融合,兼顾传统理论与时代精神。
《*过程》是高等院校*过程课程的教材。全书共分七章,内容包括:概率统计、泊松过程、更新过程、离散时间马尔可夫链、连续时间马尔可夫链、布朗运动和应用举例。每小节配有练习题,每章配有总习题,书末附有习题答案或提示,供读者参考。本书对实际应用中常见的*过程作了较为系统的介绍,有许多新的简明讲法,方便读者更好地理解*过程的概念和主要定理。 《*过程》可作为综合大学数学、统计学专业本科高年级*过程课程的教材或教学参考书,也可作为综合大学、高等师范院校、理工科大学和财经院校研究生*过程课程的教材或教学参考书。学习本书的先修课程是高等数学、概率论与数理统计。
《贝叶斯统计学及其应用》系统地介绍了贝叶斯统计学的基础理论以及在一些领域中的应用。全书共16章,内容分为4个部分:部分,介绍贝叶斯统计学的发展和应用概况,包括第1章(绪论);第二部分,介绍贝叶斯统计学的基础理论,包括第2-6章;第三部分,介绍贝叶斯统计学在一些域中的应用,包括第7-15章;第四部分,介绍贝叶斯计算方法及有关软件,包括第16章。另外,《贝叶斯统计学及其应用》还有两个附录,附录A:贝叶斯学派开山鼻祖——托马斯·贝叶斯小传,附录B: WinBUGS软件及其基本使用介绍。《贝叶斯统计学及其应用》中的一些例题、应用案例,采用R软件,并给出了相应的代码。 《贝叶斯统计学及其应用》注重可读性,力求图文并茂;既有继承国内相关教材的传统部分,又有汲取国外相关教材中流行的直观、灵活的风格。在介绍贝叶斯