这本经典的概率论教材通过大量的例子系统介绍了概率论的基础知识及其应用,主要内容有组合分析、概率论公理、条件概率、离散型随机变量、连续型随机变量、随机变量的联合分布、期望的性质、极限定理和模拟等,内容丰富,通俗易懂.各章末附有大量的练习,分为习题、理论习题和自检习题三大类,并在书末给出自检习题的全部解答。 本书是概率论的入门书,适合作为数学、统计学、经济学、生物学、管理学、计算机科学及其他各工学专业本科生的教材,也适合作为研究生和应用工作者的参考书。 2步获取导学视频: ①微信视频号关注 IT阅读排行榜 ②点击 直播回放 栏,上滑寻找
《深入浅出统计学》具有 深入浅出系列 的一贯特色,提供符合直觉的理解方式,让统计理论的学习既有趣又自然。从应对考试到解决实际问题,无论你是学生还是数据分析师,都能从中受益。本书涵盖的知识点包括:信息可视化、概率计算、几何分布、二项分布及泊松分布、正态分布、统计抽样、置信区间的构建、假设检验、卡方分布、相关与回归等等,完整涵盖AP考试范围。本书运用充满互动性的真实世界情节,教给你有关这门学科的所有基础,为这个枯燥的领域带来鲜活的乐趣,不仅让你充分掌握统计学的要义,更会告诉你如何将统计理论应用到日常生活中。
本书是一本非数学专业主要是文科及艺术类专业的数学教材,讲述方式活泼,案例贴近生活,读者可以在轻松学习中体会数学乐趣和意义。全书分为三大部分:归纳和演绎、逻辑和数;代数和几何;概率统
本书是一部经典的*过程著作,叙述深入浅出、涉及面广。主要内容有*变量、条件期望、马尔可夫链、指数分布、泊松过程、平稳过程、更新理论及排队论等,也包括了*过程在物理、生物、运筹、网络、遗传、经济、保险、金融及可靠性中的应用。特别是有关*模拟的内容,给*系统运行的模拟计算提供了有力的工具。zui新版还增加了不带左跳的*徘徊和生灭排队模型等内容。本书约有700 道习题,其中带星号的习题还提供了解答。本书可作为计算机科学、保险学、社会科学、生命科学、管理科学与工程等专业*过程基础课教材。
由美国当代著名统计学家L.沃塞曼所著的《统计学完伞教程》是一本几乎包含了统计学领域全部知识的优秀教材,本书除了介绍传统数理统计学的全部内容以外,还包含了Bootstrap方法(白助法)、独立性推断、因果推断、图模型、非参数同归、正交函数光滑法、分类、统计学理论及数据挖掘等统计学领域的新方法和技术.本书不但注重概率论与数理统计基本理论的阐述,同时还强调数据分析能力的培养.本书中含有大量的实例以帮助广大读者快速掌握使用R软件进行统计数据分析。
全书采用一种统一方式加以讨论,即首先对生成可用数据的抽样过程进行设定,并考察仅利用实证证据时,探讨了解认识总体参数的情况,然后研究倘若在施加各种各样的假设条件下,这些参数的集值识别域会如何缩小。所用的推断方法是传统的且完全非参数的方法。
本书源自的哈佛统计学讲座,介绍了帮助读者理解统计方法、随机性和不确定性的基本语言和工具,并列举了多种多样的应用实例,内容涉及偶然性、悖论、谷歌的网页排名算法(PageRank)及马尔可夫链蒙特卡罗方法(MCMC)等。本书还探讨了概率论在诸如基因学、医学、计算机科学和信息科学等领域的应用。全书共分13章,分别介绍了概率与计数、条件概率、随机变量及其分布、期望、连续型随机变量、矩、联合分布、变换、条件期望、不等式与极限定理、马尔可夫链、马尔可夫链蒙特卡罗方法、泊松过程等内容。用容易理解的方式来呈现内容,用实例来揭示统计学中基本分布之间的联系,并通过条件化将复杂的问题归约为易于掌控的若干小问题。书中还包含了很多直观的解释、图示和实践问题。每一章的结尾部分都给出了如何利用R来完成相关模拟和计算的方法。
本书用测度论的观点论述概率论的基本概念,如概率、随机变量与分布函数、数学期望与条件数学期望和中心极限定理等。本书特点是把测度论的基本内容与概率论的基本内容结合在一起讲述,论述严谨,条理清楚,便于自学,凡学过概率论基础课的读者都能阅读本书。每节后面附有习题,以便加深理解书中的内容。
随着现代科学技术的飞速发展,许多科学研究领域产生了多种复杂数据,复杂数据的统计建模涵盖了许多当代统计分支,推动了当代统计学理论方法的进步与发展,并且其应用层面几乎涉及各领域。具有复杂分层结构的数据在现实生活中很普遍。能完全剖析这类数据,发掘该类数据表象下的潜在规律性对于统计学等科研领域很有意义。本书致力于介绍复杂分层数据分析前沿知识,侧重于系统的理论与算法介绍。内容主要涉及线性分位回归、非参数分位回归、适应性分位回归、可加性分位回归、变系数分位回归、单指数分位回归、分位自回归、复合分位回归、高维分位回归以及贝叶斯分位回归、分层样条分位回归、分层线性分位回归、分层半参数分位回归、复合分层线性分位回归以及复合分层半参数分位回归,等等。
本书阐述有不等式约束的参数估计和假设检验的方法和理论,及其在小一乘估计和随机序检验等方面的应用。本书把数学规划的方法和思想用到数理统计中,使得可解决的统计问题的范围进一步扩大。
本书作为第四版,在第三版的基础上增加了一些由新技术产生的新的分析计算方法,并加入了矩阵、线性代数等一些基础计算方法。内容上系统阐述了有限单元法的基本原理及其工程应用,包括杆系结构,弹性力学平面问题,单元分析,整体分析,平面问题高次元,弹性力学轴对称问题,弹性力学空间问题,形函数、坐标变换、等参数单元与无线单元,各种平面与空间单元的比较、应用实例,弹性薄板,弹性薄壳,轴对称壳,弹性厚板和厚壳,流体力学问题,热传导问题,非线性有限元分析方法,塑性力学问题,混凝土徐变、一般黏弹性及黏塑性问题,弹性稳定问题,大位移问题,断裂力学问题,结构动力学问题,岩石力学问题,土力学问题,混凝土与钢筋混凝土结构,工程反分析与数值监控,网络自动生成、误差估计与自适应技术,矩阵,线性代数方程组,变分
本书是“All of Nonparametric Statistics”的中译本,源于作者为研究生开设的课程讲义,包括了几乎所有的现代非参数统计的内容。这种包罗万象的书不但国内没有,在国外也很难找到本书。主要包括10章内容,主要讲述非参数delta方法和自助法之类的经验CDF,覆盖基本的光滑方法和正态均值、利用正交函数的非参数推断、小波和其他的适应方法等。 本书是“All of Nonparametric Statistics”的中译本,源于作者为研究生开设的课程讲义,包括了几乎所有的现代非参数统计的内容。这种包罗万象的书不但国内没有,在国外也很难找到本书。主要包括10章内容,主要讲述非参数delta方法和自助法之类的经验CDF,覆盖基本的光滑方法和正态均值、利用正交函数的非参数推断、小波和其他的适应方法等。
本书比较全面系统地介绍蒙特卡罗方法的理论和应用.全书15章,前8章是蒙特卡罗方法的理论部分,包括蒙特卡罗方法简史、随机数产生和检验、概率分布抽样方法、马尔可夫链蒙特卡罗方法、基本蒙特卡罗方法、降低方差基本方法、拟蒙特卡罗方法和序贯蒙特卡罗方法.后7章是蒙特卡罗方法的应用部分,包括确定性问题、粒子输运、稀薄气体动力学、自然科学基础、数理统计学和可靠性、金融经济学及科学实验模拟.
无