本书简明地阐述了模糊数学的基本理论和基本方法。全书共ll章,内容包括F集合、F模式识别、F关系与聚类分析、F映射与综合评判、扩张原理与F数、F逻辑、F语言与F推理、F控制、F积分与可能性理论、F概率和F规划,书后附录介绍了集合及其运算、映射、关系与格等预备知识。根据工科院校的特点,还介绍了应用于各专业领域中较成熟的实例。各章配有习题,书后附有答案及提示。 本书可作为工科硕士研究生、工程硕士研究生的教材,或可作为经济类、管理类、机电类、信息科学、计算机科学类各专业高年级本科生或研究生的教材,亦可作为有关工程技术人员的参考书。
本书根据我国管理类、财经类专业的教学要求,选取了运筹学中线性规划、目标规划、整数规划和网络分析等分支作为本科生运筹学课程的教材。每章末配有习题,书末附有部分习题答案。本书可作为管理、财经和理工科等方面有关专业的教科书或教学参考书,也可供广大企业管理人员和财经部门的管理人员以及工程技术人员阅读和参考。
合作博弈是博弈论中的重要内容、但目前国内出版的博弈论教材多以非合作博弈为主,对合作博弈不涉及或很少涉及。施锡铨编著的《合作博弈引论》不但纠正了国外学者在定理证明中的若干致命错误,而且对于国外相关书籍上
《美国MCM/ICM竞赛指导丛书:美国大学生数学建模竞赛题解析与研究(第4辑)》是以美国大学生数学建模竞赛(MCM/ICM)赛题为主要研究对象,结合竞赛特等奖的论文,对相关的问题做深入细致的解析与研究。《美国MCM/ICM竞赛指导丛书:美国大学生数学建模竞赛题解析与研究(第4辑)》针对2003年及2004年MCM/ICM竞赛的6个题目:特技演员的安全问题、伽马刀治疗方案问题、航空行李扫描策略问题、指纹的性问题、快速通过系统设计问题以及校园网安全措施的优化配置问题进行了解析与研究。《美国MCM/ICM竞赛指导丛书:美国大学生数学建模竞赛题解析与研究(第4辑)》内容新颖、实用性强,可作为指导学生参加美国大学生数学建模竞赛的主讲教材,也可作为本科生、研究生学习和准备全国大学生、研究生数学建模竞赛的参考书,同时还可供研究相关问题的教师和研究生
本书是配套于运筹学教学的实验教材,介绍了在Excel平台下“规划求解”的操作及其方法。全书涉及运筹学的主要分支及多个有代表性的管理实践问题,所有知识点均依托生动的案例逐一展开,图文并茂,为读者提供完整的建模原理和求解过程。 本书可用于普通高等院校本科运筹学课程上机实验部分的教学,实验环节建议在4至8个机时。如教师以本书案例串讲,建议16至32个课时。本书也可以作为工商管理硕士(MBA)和公共管理硕士(MPA)“数据模型与决策”、“经济数学”、“管理科学”等课程案例教学的补充材料。本书亦可作为管理决策人员案头常备的操作指南。
《运筹学》是在徐渝教授主编的两套运筹学教材(《运筹学》(上),清华大学出版社,2005;《运筹学》,陕西人民出版社,2007)的基础上修订和改编而成的。目的是满足经济管理类各专业本科生的运筹学教学要求
本书精选反映当代科技进步和社会发展的21个问题作为案例,以“问题驱动”的形式详细讲解建立数学模型的思路、方法和步骤,并给出问题的解决方案。在所选的案例中,有的是“中国大学生数学建模竞赛”、“美国大学生数学建模竞赛”的赛题,也有的是根据赛题改编的,还有一些其他问题,涉及的数学方法主要有微分、积分、代数、统计、概率、*化、微分方程、分形几何、拟合、插值、灰色理论、图论及现代优化算法等。另外,还有一些物理方法。为便于读者学习和训练,本书针对不同案例数学建模所需的数学理论和方法,有侧重地分别介绍相关的数学知识。除个别计算比较简单的案例外,都在案例解答中给出了计算程序。《数学建模案例》案例特色鲜明、涉及范围广阔,内容讲解紧凑、明了,对读者掌握分析实际问题建立数学模型大有帮助,可作为
杨纶标和高英仪等编著的《模糊数学原理及应用》简明地阐述了模糊数学的基本理论和基本方法。全书共ll章,内容包括F集合、F模式识别、F关系与聚类分析、F映射与综合评判、扩张原理与F数、F逻辑、F语言与F推理、F控制、F积分与可能性理论、F概率和F规划,书后附录介绍了集合及其运算、映射、关系与格等预备知识。根据工科院校的特点,还介绍了应用于各专业领域中较成熟的实例。各章配有习题,书后附有答案及提示。 《模糊数学原理及应用》可作为工科硕士研究生、工程硕士研究生的教材,或可作为经济类、管理类、机电类、信息科学、计算机科学类各专业高年级本科生或研究生的教材,亦可作为有关工程技术人员的参考书。
杨纶标和高英仪等编著的《模糊数学原理及应用》简明地阐述了模糊数学的基本理论和基本方法。全书共ll章,内容包括F集合、F模式识别、F关系与聚类分析、F映射与综合评判、扩张原理与F数、F逻辑、F语言与F推理、F控制、F积分与可能性理论、F概率和F规划,书后附录介绍了集合及其运算、映射、关系与格等预备知识。根据工科院校的特点,还介绍了应用于各专业领域中较成熟的实例。各章配有习题,书后附有答案及提示。 《模糊数学原理及应用》可作为工科硕士研究生、工程硕士研究生的教材,或可作为经济类、管理类、机电类、信息科学、计算机科学类各专业高年级本科生或研究生的教材,亦可作为有关工程技术人员的参考书。
本书是经济管理类各专业适用的运筹学辅导教材。本书包括两个部分:部分是运筹学各章节习题类型归纳与解析;第二部分是运筹学习题库,这部分的题全部都给出了正确的答案,有的还给出了解题的全过程,为学习运筹学的同学们提供了极大的选择空间。本书题材和习题取自全国高校广泛使用的清华大学出版社出版的《运筹学》和人民大学出版社出版的《运筹学通论》。 本书两个部分内容安排合理,便于学习运筹学的各个层次的同学们自学,亦可作为运筹学教学参考书。
运筹学的根本目的是寻找解决形形色色的实际问题的一个“解”。运筹学是软科学中“硬度”较大的一门学科,兼有逻辑的数学和数学的逻辑的性质;运筹学的学习和入门不需要艰深的数学知识做基础,仅需微积分、线性代数和概率论的一些基本知识。 《运筹学教程(第二版)/普通高等教育“十二五”规划教材》共分13章,內容包括线性规划、对偶理论、整数规划、运输问题、多目标规划、目标规划、动态规划、非线性规划、图论、决策论、对策论、存贮论、排队论、统筹方法等。各章都附有练习题,并提供了较详细的参考答案。附录介绍了当今流行的计算化问题的LINGO软件。 《运筹学教程(第二版)/普通高等教育“十二五”规划教材》可作为财经类专业本科生、研究生的必修或选修运筹学课程的教材,也可作为相关领域读者学习运筹学的参考书。
本书是配套于运筹学教学的实验教材,介绍了在Excel平台下“规划求解”的操作及其方法。全书涉及运筹学的主要分支及多个有代表性的管理实践问题,所有知识点均依托生动的案例逐一展开,图文并茂,为读者提供完整的建模原理和求解过程。 本书可用于普通高等院校本科运筹学课程上机实验部分的教学,实验环节建议在4至8个机时。如教师以本书案例串讲,建议16至32个课时。本书也可以作为工商管理硕士(MBA)和公共管理硕士(MPA)“数据模型与决策”、“经济数学”、“管理科学”等课程案例教学的补充材料。本书亦可作为管理决策人员案头常备的操作指南。
《运筹学》是高等院校理工科、管理学科和经济学科等学科各专业学生的必修课和专业基础课,也是这些专业硕士研究生入学考试的一门考试科目,也是参加全国大学生数学建模竞赛的选手的必修课程。它在自然科学、社会科学、金融、经济学等各方面都有着广泛的应用。为了帮助广大大学生扎实地掌握运筹学的精髓和解题技巧,提高解答各种题型的能力,我们根据清华大学编写的《运筹学》(修订版)编写了本书。 全书由以下几个部分组成: 1.概念、定理及公式:列出了各章的基本概念,重要定理和重要公式,突出了必须掌握或考试中出现频率较高的核心内容。 2.重点难点祥解:教材中课后习题丰富、层次多,许多基础性知识可以从各个角度帮助学习者理解基本概念和基本理论,因此,我们对课后习题全部给出了详细的解答。 3.典型例题精解:
今天,一方面,人类的资源越来越紧张,另外一方面,人类生存权利平等、生命价值高于一切等等,渐渐成为普遍价值。这样,如何在竞争的世界中合作共赢越来越被人们所重视。 然而,合作不仅仅是一个态度问题,更重要是方法问题。博弈论是关于理性人竞争与合作的理论,然而博弈论没有给出解决博弈困境以及如何合作的方法。本书利用博弈理论,分析如何在竞争性博弈中做到合作,以及在非竞争性的博弈即联盟博弈中,如何实现合作。本书利用大量具体案例深入浅出地阐述博弈中参与人“如何避免更糟”、“如何寻求更好”、“如何走出必然的困境”、“如何共存”等等合作的具体方略。 本书可看做是共赢的行动指南或行动方法论。
杨纶标和高英仪等编著的《模糊数学原理及应用》简明地阐述了模糊数学的基本理论和基本方法。全书共ll章,内容包括F集合、F模式识别、F关系与聚类分析、F映射与综合评判、扩张原理与F数、F逻辑、F语言与F推理、F控制、F积分与可能性理论、F概率和F规划,书后附录介绍了集合及其运算、映射、关系与格等预备知识。根据工科院校的特点,还介绍了应用于各专业领域中较成熟的实例。各章配有习题,书后附有答案及提示。 《模糊数学原理及应用》可作为工科硕士研究生、工程硕士研究生的教材,或可作为经济类、管理类、机电类、信息科学、计算机科学类各专业高年级本科生或研究生的教材,亦可作为有关工程技术人员的参考书。
由*高教司和中国工业与应用数学学会主办的全国大学生数学建模竞赛一直受到广大同学的热烈欢迎,不断健康地向前发展,有利于培养学生解决实际问题的能力、创新意识及合作精神,有力地促进了高等院校的教学改革,已经发展成为国内规模*的大学生学科性竞赛活动。本书第四版在2008年第三版的基础上进行了补充与修订,收集了1992年以来有关竞赛的文件、赛题、参赛及获奖情况、组织工作经验及学生收获等,是对我国大学生数学建模竞赛20年来发展历程的初步总结。 本书可供组织和参加数学建模竞赛的师生参考,也可供有关教育行政人员等查阅。