本书系统介绍锥约束优化的**性理论与增广Lagrange方法,主要内容包括变分分析的相关基础、约束集合的切锥与二阶切集、对偶理论、非线性锥约束优化的一阶**性条件和二阶**性条件、三类重要的锥约束优化的**性条件、凸规划的内点算法以及非凸半定规划的增广Lagrange方法的收敛速度估计等.
整数规划是运筹学与最优化理论的重要分支之一.整数规划模型、理论和算法在管理科学、经济、金融工程、工业管理和其他领域有着广泛的应用.本书主要介绍经典的线性整数规划理论和算法,同时简单介绍近年发展起来的非线性整数规划理论.主要内容包括:线性和非线性整数规划问题和模型、线性规划基础、全单模矩阵、图论和网络流问题、算法复杂性理论、分校定界算法、割平面方法、多面体和有效不等式理论、整数规划对偶理论、0-1二次整数规划与SDP松弛、0-1多项式整数规划等.
《数理统计及其在数学建模中的实践(使用MATLAB)》从数理统计分析在数学建模中的应用以及在MATLAB中的实现出发,介绍概率论与数理统计分析的基本概念、典型应用及使用MATLAB进行实际建模分析的基本方法和应用。本书将概率论与数理统计的建模方法与MATLAB典型应用融为一体,既从理论上介绍了数理统计基础的基本原理、数理统计知识在数学建模中的使用方法,又详细讲解了该部分知识在MATLAB环境下的实现方法,并给出了大量的典型实例分析。 《数理统计及其在数学建模中的实践(使用MATLAB)》主要内容包括:利用MATLAB制作统计报告或报表、数据处理与统计作图、统计估计、参数检验、方差分析、回归分析与数据拟合、马尔可夫链、数理统计建模实验设计等。书中从数学建模的角度出发描述了通过数理统计数学建模的一般方法步骤,既有理论推导又详
本书系统地介绍运筹学中的主要内容,重点陈述应用最为广泛的线性规划、对偶理论、整数规划、非线性规划、动态规划、图与网络、决策分析、博弈论、库存论、排队论与模拟等定量分析的理论和方法。阅读本书只需微积分、线性代数与概率统计的一些基本知识。本书是教学改革项目“基于信息技术平台的运筹学立体化教材”的成果,配备有完整和立体化教学包,包括教师手册、多媒体课件、习题案例答案、补充习题及其答案、教学案例库、考试测评系统、在线支持等。
正如宾默尔在这本《博弈论教程》中用大量例子和应用充分展示的那样,博弈论有利于弄懂人类各种各样的互动关系。这本新书是替代宾默尔前一本博弈论教材《娱乐和博弈》(Fun and Games)的。这本充满乐趣的博弈论入门教材适合高年级本科生或低年级研究生,着重回答这样三个问题:什么是博弈论?博弈论如何应用?博弈论为什么是正确的?《博弈论教程》也是认真讨论这三个问题,又不过分数学化的一本书。《博弈论教程》的主题包括议价理论、不竞争、合作博弈、贝叶斯决策理论、不完全信息博弈、机制设计,以及拍卖理论。《博弈论教程》适合许多专业的学生,包括经济学、数学和哲学专业。为了方便其他专业学生的学习,在必要的地方会对所有三个学科的标准专题作一些回顾。《博弈论教程》的一个重要特征是配有大量习题,而且答案是可得的。
朱顺泉和苏越良编著的《管理运筹建模与求解——基于Excel VBA与MATLAB》向读者介绍常用的管理运筹学模型的建立及其计算机软件的实现方法,主要包括线性规划、整数线性规划、目标规划、动态规划、网络规划、非线性规划、数据包络分析、模拟决策、人工神经网络、遗传算法等模型及使用Excel,ExcelVBA和MATLAB等软件对上述模型进行求解的方法和步骤。 《管理运筹建模与求解——基于ExcelVBA与MATLAB》特点是案例丰富,贴近实际,具有很强的实用性和可操作性,易于读者理解和自学。《管理运筹建模与求解——基于ExcelVBA与MATLAB》可作为经济管理类本科生及攻读MBA、工程硕士等专业学位的研究生学习相关课程的教材或参考书,也可供相关专业人士参考。
《非对称作战数学建模与仿真分析》是在总结作者近年教学心得和科研成果的基础上写作的一部学术性较强的军事技术理论著作,其目的是为探究非对称作战活动规律、发展完善非对称作战理论、指导非对称作战运用提供支持。《非对称作战数学建模与仿真分析》共分10章。章和第2章主要论述非对称作战的基本概念和主要特征,作战基本要素非对称运用的表现形式以及作战的非对称运行机理;第3章~0章是《非对称作战数学建模与仿真分析》的核心内容,建立了综合评价模型、多目标规划模型、指数法模型、兰彻斯特方程模型、突变分析模型、基于多智能体的作战仿真模型、基于复杂网络和数据场理论的作战仿真模型,并进行了非对称作战仿真实验设计及典型应用分析。
《建模的数学方法与数学模型》内容共分九章:章是数学模型概论,第二章是初等方法建模,第三章是微分法建模,第四章是差分方法建模,第五章是微分方程定性理论分析建模,第六章是线性规划方法建模,第七章是动态规划方法建模,第八章是层次分析法建模,第九章为图论方法建模。附录中给出了《建模的数学方法与数学模型》大部分图形的MAlLAB程序代码,以便更好地对图形验证分析。 《建模的数学方法与数学模型》可作为高等院校本专科生数学建模课程、数学建模竞赛培训课程的,也可供高校师生和相关科技工作者参考。