本书包含一百五十多道数学问题,这些问题主要与数学分析有关,还进一步扩展了 Bernoulli数、微分方程和度量空间的主题.书中同时给出了这些问题的解答,包括相关提示 和解题技巧,供读者理解与掌握.每一章都有一个要点总结,其中还有一些基本定义和结论, 包含了许多对数学分析中一些重要数学结果的简要历史评论以及参考文献。 本书可作为本科生在微积分和线性代数课程期间或之后的习题集,对学习解析数论也 具有一定的指导意义.
《数学建模算法与应用(第2版)》作者根据多年数学建模竞赛辅导工作的经验编写《数学建模算法与应用(第2版)》,涵盖了很多同类型书籍较少涉及的新算法和热点技术,主要内容包括时间序列、支持向量机、偏很小二乘
本书旨在指导学生初步掌握数学建模的思想和方法,共分两大部分:离散建模和连续建模,通过本书的学习,学生将有机会在创造性模型和经验模型的构建、模型分析以及模型研究方面进行实践,增强解决问题的能力。本书对于用到的数学知识力求深入浅出,涉及的应用领域相当广泛,适合作为高等院校相关专业的数学建模教材和参考书,也可作为参加外数学建模竞赛的指导用书。
《经济学中的数学》主要介绍高等数学在经济学中的应用。主要包括八个部分。部分为导论(-5章),主要介绍一元微积分及其应用。第二部分(第6-11章)介绍线性代数及其在经济学中的应用,包括线性方程组及其解法、矩阵代数、行列式等内容。第三部分(2-15章)介绍多元微分并重点应用于比较静态分析。第四部分(6-22章)主要是化方面的内容,包括无约束化和约束化等问题。第五部分(第23-25章)介绍特征值与动态学,引入差分方程解决动态经济学的有关问题。第六部分(第26-28章)介绍高等线性代数。第七部分(第29-30章)的高等数学分析是对前面经济学数学方法的进一步深化。第八部分重点介绍数学本身的方法论问题。在《经济学中的数学》的,我们提供了部分习题的答案。
本套书分上、下两册共十五章,介绍了一元函数微积分、微分方程、线性代数初步、概率统计初步等内容。为了方便学生利用数学软件解决数学中的计算问题,我们介绍了MATLAB在经济数学方面的应用,为了服务经济、管理等相关专业的需求,我们加强了经济方面的应用例题,方便学生学习。 本书可作为高职高专院校、成人高校和本科院校开办的二级院校经济、管理等相关专业的经济数学教材,同时也适合于经济管理类各专业人员参考。
本书包括通用的数值分析(或称计算方法)课程的8个基本论题:插值、函数逼近、数值微积分、矩阵特征值计算、线性代数方程组、非线性方程与方程组、常微分方程和偏微分方程的数值方法。 本书的取材着眼于工科研究生可能的应用需求,除了坚持内容的科学性、严谨性外,写法上注意强调各类数值问题的提法,有助于研究生利用所学方法和理论去解决具体的应用问题;书中概念清晰,方法和公式的来龙去脉清楚,理论结果尽量深入浅出并联系应用,较难理解或内涵较丰富的部分,适当增加例题或给出启发式的引导;对每个论题划分出“基本教学内容”和“较深入内容或参考材料”两部分,给教学和学习(包括自学)提供了粗略指引。这是一本好教、好学并保证应有科学水平的研究生教材。 本书适合工科硕士生、非数学类的理科硕士生和工程硕士生作为
A.H.施利亚耶夫编著的《金融数学基础(第1卷事实模型)》原版自1998年出版以来,被认为是“金融数学方面最深刻的一本著作”。全书共分两卷。每一卷都包含四章。卷的副题为:事实·模型。第二卷的副题为:理论。这两卷的内容既相互联系。又相对独立。读者可把本书看作一本“金融数学全书”。 卷的章有关国际金融市场以及金融理论和金融工程的“事实”。它可看作一位前苏联数学家对西方金融市场和金融理论、金融工程的独特理解。其中作者不但概述了金融市场的基本状况、金融学的基本概念以及Markowitz证券组合选择理论、资本资产定价模型《CAPM)、Ross套利定价理论(APT)、有效市场理论等。甚至还简要介绍了保险业和精算理论。 卷的后三章都有关金融学的“模型”:离散模型、连续模型和统计模型。作者提出,Doob分解、局部鞅、鞅变换等概念在价格
中国工业与应用数学学会(CSIAM)于2004年8月24—30日在湖南湘潭成功举办了“当代应用数学的前沿与展望学术研讨会” 暨第八届中国工业与应用数学学会年会。考虑到大会报告因其代表性和前瞻性而具有很高的学术价值,我们集结成一卷出版。同时,在分组报告中也选取了一小部分。目前,数学模型在应用科学中的应用十分活跃,特别是在材料科学、流体动力学、图像处理、生物学等领域。希望,本书的出版将有力地帮助读者了解当前工业与应用数学研究的现状和热点问题,它的问世也将有助于推动工业与应用数学的发展。本书可供该领域及相关领域的专家、学者及研究生参考使用。
本书从可计算一般均衡(CGE)模型的一般原理出发,对模型的构建,模型的参数估计,一般均衡模型的求解方法进行了介绍。开展政策模拟需要软件的支持,本书根据系统开发的基本流程,对系统开发的需求进行了分析,对于系统的构建进行了模块化分析,并对系统开发的数据库的设计框架进行了梳理分析。使用CGE开展政策模拟分析,离不开社会核算矩阵,本书对社会核算矩阵的一般原理、结构,社会核算矩阵调平的方法进行了介绍。使用CGE开展政策模拟,划分区域的尺度可以是全国的,可以是省区性的,也可以是多区域性的,本书对这几种模式下的社会核算矩阵的构建进行了分析,并给出了相应的实例。在本书的最后几章,我们对CGE计算的几个应用进行了模拟分析。 本书适合经济学、经济地理、数量经济学等专业高年级本科生和研究生使用,也适合政策模拟和数
《建筑中的数学之旅》带领读者享受了一次世界最壮观建筑物背后的数学之旅,探讨了基础数学与建筑的相互作用,并深入观察了建筑物的美学、历史和结构。《建筑中的数学之旅》围绕两条历史叙事主线展开介绍。基本叙事主线主要集中在西方某些建筑的建筑形式(几何学、对称性及比例)和结构(推力、负载、张力、挤压问题)上,涵盖从金字塔到20世纪的标志性建筑,争取用赫赫有名的例子说明建筑的重要特征。第二条叙事主线从历史的角度逐步阐述当前的初等数学,包括欧几里得几何知识、三角学、向量的性质、二维和三维解析几何,以及微积分基础。Hahn旨在将两条叙事主线交织在一起展示它们是如何互相影响的。另外,他还通过彩图1拼贴了各种历史性建筑(比例相同),给出了《建筑中的数学之旅》的快速导览,并在书中探讨了这里的许多建筑,特别对其穹顶、
本书是国外介绍有限元方法的经典入门教程,主要介绍有限元方法的基本理论知识、一般原理、各类实体模型的问题求解和实际工业应用。本书内容丰富新颖, 涵盖了简单的弹簧和杆、梁的弯曲、平面应力/应变、轴对称、等参公式、三维应力、板的弯曲、热传导和流体介质、多孔介质、液压网络、电网和静电学中的流体流动、热应力、与时间相关的应力和热传导等,并由此引出有限元分析的高级课题。此外,本书还在不同阶段引入了弹性基本理论、直接刚度法、伽辽金残余法、势能原理、虚功原理等,以建立分析所需要的方程。
本书以数学工具软件MAPLE,MATLAB,VISUAL FORTRAN,STATIS-TICA的使用为基础,介绍科学和工程中应用数学方法的内容,包括线性代数与矩阵论基础、线性方程组和非线性方程组的数值方法、数值逼近方法(值和拟合、数值积分和数值微分)、线性规划以及无约束和有约束的化方法等内容、应用统计方法和实验设计以及数据的处理与分析、智能化数据计算处理方法(人工神经网络的BP算法、模拟退火算法和遗传算法)、微分方程组的一些实用算法及程序(微分代数方程的解法和偏微分方程组的配置解法等)。各章都有应用数学工具软件,解决工程技术与科学研究工作中的所到的一些典型问题(特别是与化学和化工相关的问题)作为实例。 本书采用非数学专业人员易接受的方式,对线性代数、数理统计、化方法、数值计算、方程等课程的内容进行有机地结合,阐述原理
控制论是定量研究客观事物的发生、发展及对它的发展过程进行控制的科学。 本书共分七章,,二章介绍离散与连续时间动态系统的状态空间模型及其求解方法,第三,四章介绍离散与连续时间动态系统的稳定性理论与经济应用,第五章介绍线性系统的反馈控制与经济应用,第六,七章介绍离散与连续时间系统的控制与经济应用。本书的特点是:在介绍经济学文献中常用的控制论基本原理与方法的基础上,介绍了大量的经济应用模型,如市场价格波动模型,动态IS-LM模型,动态AD-As模型,失业与通货膨胀相互作用模型,济增长模型等约30个模型。
A.H.施利亚耶夫编著的《金融数学基础(第2卷理论)》原版自1998年出版以来,被认为是“金融数学方面最深刻的一本著作”。全书共分两卷,每一卷都包含四章。卷的副题为:事实·模型。第二卷的副题为:理论。这两卷的内容既相互联系,又相对独立。读者可把本书看作一本“金融数学全书”。 第二卷有关“理论”的四章是:“金融模型中的套利理论”或“定价理论”:先是“离散时间”,再是“连续时间”。“套利理论”主要指资产定价的和第二基本定理:市场无套利机会等价于存在(局部)等价概率鞅测度,使得所有证券的折现价格过程为鞅(定理),并且当市场完全时,这样的鞅测度是的(第二定理)。这些定理在近二、三十年的研究中已经近乎尽善尽美。无论对数学还是对金融的发展都有深远影响,但所涉及的数学工具也越来越艰深。作者高瞻远瞩。抓住要害
本书是国外介绍有限元方法的经典入门教程,主要介绍有限元方法的基本理论知识、一般原理、各类实体模型的问题求解和实际工业应用。本书内容丰富新颖, 涵盖了简单的弹簧和杆、梁的弯曲、平面应力/应变、轴对称、等参公式、三维应力、板的弯曲、热传导和流体介质、多孔介质、液压网络、电网和静电学中的流体流动、热应力、与时间相关的应力和热传导等,并由此引出有限元分析的高级课题。此外,本书还在不同阶段引入了弹性基本理论、直接刚度法、伽辽金残余法、势能原理、虚功原理等,以建立分析所需要的方程。
《经济学中的数学》主要介绍高等数学在经济学中的应用。主要包括八个部分。部分为导论(-5章),主要介绍一元微积分及其应用。第二部分(第6-11章)介绍线性代数及其在经济学中的应用,包括线性方程组及其解法、矩阵代数、行列式等内容。第三部分(2-15章)介绍多元微分并重点应用于比较静态分析。第四部分(6-22章)主要是化方面的内容,包括无约束化和约束化等问题。第五部分(第23-25章)介绍特征值与动态学,引入差分方程解决动态经济学的有关问题。第六部分(第26-28章)介绍高等线性代数。第七部分(第29-30章)的高等数学分析是对前面经济学数学方法的进一步深化。第八部分重点介绍数学本身的方法论问题。在《经济学中的数学》的,我们提供了部分习题的答案。
《计量经济学》的两位作者马克·W.沃森与詹姆斯·H.斯托克都是计量经济学领域中的,尤其以时间序列的研究最为出众。本书全面系统地介绍了计量经济学的基本知识。全书共分五篇,内容包括:导论与复习、回归分析基础、回归分析的深入专题、经济时间序列数据的回归分析、回归分析的计量经济学理论。
本书包括模拟导论、在电子表格上模拟、模拟中的概率统计、使用水晶球的风险分析、风险分析应用、建立系统模拟模型等。本书是为工商管理相关专业高年级本科生和研究生所著的一本。作者以普通的电子表格为主要工具,配以可以载于电子表格上的水晶球软件,对模拟与风险分析的基本理论和方法作了简练和直观的介绍。本书回避了高深的教学知识和计算机程序设计语言,注重培养学生的实际应用能力。书中有大量的习题和实践案例,供学生研习。书后附水晶球软件学生版光盘,这将极大地方便读者学习和使用本书。本书将是读者不可多得的一部或参考用书。