本书主要讲述了抽象整数、带有单位的数量、数的可整除性、普通分数、小数、比和比例等内容,语言通俗易通;结构上划分七章,并从最基础的 理解数字 开始,又划分多个知识点,递进式讲述,衔接连贯.每章节在描述时,有的会配有具体例子参考,不脱离实际操作,使读者更快速掌握知识,也能够激发读者的阅读兴趣,启迪思维,提高对算术的认识. 本书适用于中小学师生、数学相关专业的学生以及对算术有专研精神的兴趣爱好者参考阅读.
本书弱化了理论的严密证明,代之以简单的推导与方法的说明,加强了例题的示范作用,是浙江工业大学教学改革的系列教材之一。《BR》 本书主要介绍数值计算的基本理论与方法,内容包括数值计算引论、解线性方程组的直接法、解线性方程组的迭代法、非线性方程(组)的数值解法、插值法、逼近、数值积分与数值微分、常微分方程初值问题数值算法等。对于数学系的学生,教学内容可侧重算法的理论部分;对于一般工科的学生,教学内容可侧重算法的实用性和实验性部分。
《Mathematica基础及其在数学建模中的应用(第2版)》是作者结合多年的Mathematica与数学建模课程教学实践编写的,其内容包括Mathematica软件介绍、Mathematica应用基础、Mathematica在高等数学中的应用、Mathematica在线性代数中的应用、Mathematica在概率统计中的应用、利用Mathematica编程、Mathematica在数值计算及图形图像处理中的应用、Mathematica在绘制分形图中的应用、Mathematica在数学建模中的应用共9章。书中配备了较多关于Mathematica与数学建模的实例,这些实例是学习Mathematica与数学建模必须掌握的基本技能。 《Mathematica基础及其在数学建模中的应用(第2版)》由浅入深,由易到难,可作为学习Mathematica与数学建模的自学用书,也可以作为数学建模培训教材。
俄罗斯历来注重数学理论的研究,并且具有鲜明的特色,在计算数学领域的研究也有许多独特之处。 由H.C.巴赫瓦洛夫、热依德科夫、柯别里科夫所著的《数值方法(第5版俄罗斯数学教材选译)》是数值方法方面的经典教材,在俄罗斯影响很大。本书视角新颖,内容翔实,阐述系统,主要内容包括:计算误差,插值与数值微分,数值积分,函数逼近,多维问题,数值代数方法,非线性方程组和*化问题的解,常微分方程、偏微分方程和积分方程的数值求解方法。 本书可供高等院校计算数学及相关专业的学生、教师和研究人员使用参考。
本书详细地介绍了计算机中常用的数值计算方法,主要内容包括:解线性方程组的迭代法、线性最小二乘问题、矩阵特征值问题、解非线性方程组的数值方法、常微分方程初值和边值问题的数值解法、函数逼近。本书每章末均附有丰富、实用的习题。
《动态多目标优化进化算法及其应用》在全面总结国内外关于动态多目标优化及其进化算法发展现状、基础理论及实现技术的基础上,着重介绍了作者基于进化计算的动态多目标优化方面的研究成果,主要包括:动态无约束多目标优化进化算法;动态约束多目标优化进化算法;离散时间空间上的动态多目标优化进化算法;基于粒子群算法的动态多目标优化求解方法;基于进化算法求解动态非线性约束优化问题;动态多目标进化算法性能评价指标度量方法;动态多目标优化问题测试集。为便于应用,书后附有部分算法源程序。
本书介绍了数值方法的理论及实用知识,并讲述了如何利用MATLAB软件实现各种数值算法,以便为读者今后的学习打下坚实的数值分析与科学计算基础。本书内容丰富,教师可以根据不同的学习对象和学习目的选择相应的章节,形成理论与实践相结合的学习策略。书中的每个概念均以实例说明,同时还包含大量的习题,范围涉及多个不同领域。通过这些实例进一步说明数值方法的实际应用。本书的突出特点是强调利用MATLAB进行数值方法的程序设计,可提高读者的实践能力并加深对数值方法理论的理解;同时它的覆盖范围广,包含数据方法的众多研究领域,可以满足不同专业和不同层次学生的需求。 本书概念清晰、逻辑性强,可作为大专院校计算机、工程和应用数学专业的教材和参考书。
《差分进化算法理论与应用(精)》是著者(张春 美)在北京理工大学博士研究期间取得成果的基础上 ,进一步深入研究、充实整理后形成的,全书共分为 7章。内容包括差分进化算法、种群规模适应性差分 进化算法、参数适应性分布式差分进化算法、分布式 Memetie差分进化算法等。 《差分进化算法理论与应用(精)》可以为自动化 、计算机科学、管理科学等相关学科的教师、学生和 工作人员在学习和生产实践中提供参考。
\\\"《计算方法及其应用》主要介绍了数值计算方法的基本理论,内容包括计算方法的基本概念、函数的插值与拟合、数值积分和数值微分、非线性方程的数值解法、解线性方程组的直接法和迭代法、常微分方程的数值解法、矩阵的特征值和特征向量的计算。书中含有丰富的例题、习题和上机实验题。 《计算方法及其应用》可作为数学与应用数学、信息与计算科学、计算机科学与技术专业等本科生“计算方法”课程的教材或参考书,也可作为理工科研究生“数值分析”课程的教材或参考书。\\\"
该书以索伯列夫空间为框架,介绍抽象的变分形式和Ritz-Galerkin法,基于peano余项估计介绍索伯列夫空间插值理论,从而建立标准有限元法的一般误差估计。还用相当篇幅讨论非标准有限元,包括非协调元、杂交元和混合元。特别还用一章介绍边界元法及多尺度Galerkin快速算法。
为进一步贯彻落实“科教兴国”战略、为 专家学者提供 广阔的学术交流平台,“第十一届全国科学计量学与科教评价研讨会”以“大数据背景下‘五计学’与评价科学的新发展”为主题,会议论文成果代表了我国计量学领域的 进展和水平,内容涉及计量学的理论、方法与应用等多个方面,集中探讨了当前的学科前沿和发展方向。这些 论文内容上有以下特色 :①学科交叉融合;②研究手段创新;③研究领域拓展;④研究内容深化。
本书介绍现代科学计算中常用的数值计算方法及其理论,主要内容包括:数值计算的基本概念和基本原则、插值法、函数的逼近、数值积分和数值微分、线性方程组的直接解法、线性方程组的迭代解法、非线性方程和非线性方程组的数值解法、矩阵特征值问题的数值解法、常微分方程的数值解法.本书每章都配有较丰富的习题和数值实验题,书末附有习题参考答案与提示.本书取材精练、叙述清晰、系统性强、例题丰富,注重内容的实用性以及数值计算方法基本思想的阐述.本书可作为高等院校理工科各专业“数值计算方法”和“数值分析”课程的教材或教学参考书,也可供从事科学计算与工程计算的科技人员学习参考.