本书为日本数学家、菲尔兹奖得主广中平祐的思想文集。书中以“创造性思维”为线索,讲述了作者在数学研究中总结出的思考模式——“可变思考”,并在问题的发现、提出、整理、转换等方面做了具体阐述,让读者了解数学家独特的多维度思考方法。同时,本书还对日本数学教育中的问题做了分析,提出了学校教育、*子教育中培养创造性思维的原则与方法。本书是广中平祐先生对自己研究方法的系统性总结,是了解其思想以及日本数学研究方法的珍贵资料。
面积法是一种有着悠久历史的传统方法。近几十年来, 面积法体系得到进一步的发展, 焕发出新的生命力, 如今已成为平面几何中的基本方法,甚*成为解决很多几何难题的通法。 本书介绍了用面积法解题的基本工具 (共边定理和共角定理) 以及指导思想 (消点法), 并辅以大量例题来说明用面积法解题的有效性。 另外, 书中还介绍了面积法与勾股定理、 托勒密定理等的关系, 以及面积法在不等式、 三角等多个数学分支中的应用。 本书以面积法为主线, 串接了许多有趣的数学内容, 适合中小学师生以及数学爱好者阅读。 我们很高兴看到读者对我们的认可。现在,我们对这本书进行了完善并重新出版,希望能对你学*几何有一点帮助 .
书名:写给全人类的数学魔法书 定价:32元 作者:永野裕之 出版社:新世界出版社 出版日期:2013-6-1 0:00:00 ISBN:9787510441912 字数: 页码:209 版次:第1版 装帧:装 开本:16 商品标识: 书名:写给全人类的数学魔法书 定价:32元 作者:永野裕之 出版社:新世界出版社 出版日期:2013-6-1 0:00:00 ISBN:9787510441912 字数: 页码:209 版次:di1版 装帧:装 开本:16 商品标识: 《写给全人类的数学魔法书》编辑推荐:全日本校长永野裕之*新力作! 全日本受欢迎的数学书! 日本yamaxun一般数学类别*!冲破惯常的数学学习法,告诉你数学到底是个什么东西,为什么 越是死记硬背公式,就越学不好数学 ;书中详尽介绍10种*基本解题思路,只要熟练掌握,就能轻松应对各种类型数学题,尤其是难度较高的高考真题;书中回答了 怎样听课 怎样
本书为日本数学家小平邦彦晚年创作的经典微积分著作,有别于一般的微积分教科书,本书突出 严密 与 直观 的结合,重视数学中的 和谐 与 美感 ,讲解新颖别致、自成体系,论证清晰详尽、环环相扣,行文深入浅出、流畅易读,从原理、思想到方法、应用,处处体现了小平邦彦的深厚功力与广阔视野。作者着眼数学分析的深处,结合自身独到的思考与理解,从严谨的实数理论出发思谋微积分,通过巧妙引导,启发读者自主思考,提升对微积分的领悟理解程度。 本书是小平邦彦为后人留下的一份重要文化财富,不仅值得数学专业人士研读,对于需要微积分知识的其他理工科学生和专业人员也具有深刻启示。
数学是关于数的学问吗?数学是人类的发明还是人类的发现?为什么数学看起来那么抽象深奥?为什么说数学是万学之学? 本书以数学的产生和发展历程为主线,通过数学人物和历史事件对这些问题进行寻根溯源,讲述了一个关于数学渊源的故事,为读者描绘了一幅生动有趣、绚丽迷人的历史画卷。 在本书中,作者把数学的主要分支、理论和应用介绍给读者,其中既没有各种复杂艰深的数学公式和推理证明,也没有大量生僻的数学专业术语,条理清晰,语言通俗易懂。通过阅读本书,读者可以了解数学是怎么诞生的以及什么是数学这两个基本问题,从而以不一样的眼光看待数学这一人类智慧。 本书可供对数学感兴趣的读者阅读。
本书从数学、哲学、计算机科学、神经科学和人工智能等角度,全面阐述了贝叶斯理论背后的基础知识、思维方式和丰富哲理。贝叶斯定理一旦与算法相结合,就不再是一套枯燥的数学理论或认识论,而变成了应用广泛的知识宝库,催生了众多现代数学定理,以及令人称道的实践成果。作者一改传统的数学探讨模式,不仅展现了贝叶斯理论背后的科学思想,还阐述了它与人类思维之间的深刻关系,并对各相关领域和人工智能的发展进行了展望。本书适合喜爱数学、算法、机器学习、人工智能、逻辑学和哲学的大众读者,读者无须过多数学和算法知识就能读懂。
本书是初等数论入门的通俗科普读本。书中以身边的生活之事为例,由浅入深、生动形象地介绍了数的奇妙性质与规律。作者用直观、易懂的讲解,引领读者去体会数论证明的不可思议与酣畅淋漓,在惊奇与畅快之中提升对数学的理解程度。本书可作为学生了解数论、提高算术能力的辅助读物,也可作为技术人员理解计算科学的参考用书。
三角学是一个古老的数学分支,它美丽而又神秘。 本书从历史发展的角度展现了三角学与其他诸多学科的紧密联系,阿涅西的女巫、高斯的启示、芝诺的遗憾 一连串有趣的故事构成了一幅美丽的画卷。全书共15章,历史、理论、趣闻、应用尽含其中,涵盖了三角学的所有精华部分。品读此书,你会感叹数学之美、人类之聪慧、科学发展之不易。 本书适合所有对数学特别是三角学感兴趣的读者阅读。
本书将数学的统一性贯穿始终,将理论方法与经典例题相结合,以战略、战术及工具为主线,把解题提高到了艺术高度。首先教总结解决问题的方法论,这也是全书的核心内容,进而通过实例阐述了具体的解题战术,如抽屉原理等。并从解题者的角度分别讲述了代数学、组合数学、数论、几何和微积分。
数学是上帝用来书写宇宙的文字 蕴含在生活中的各个角落,越靠近它,你就越能体会到它的不简单之处。本书精选了《最强大脑》节目中的热门项目,详细剖析了这些烧脑问题背后的数学知识并加以扩展。数字华容道的排列问题,立体一笔画的解链,迷宫中的拓扑知识,繁花规图案的摆线方程,数独的设计与求解 这一系列有趣的问题不仅可以加深你对数学的了解,而且还能开发智力、活跃大脑。 本书适合喜欢数学的读者阅读。
黎曼假设,即素数的未解谜题,被视为数学研究的“珠峰”,吸引了一代代数学家投身于数论研究中,其中不乏数学史上大名鼎鼎的人物。而破解这一谜题过程中的发现,已经给电子商务、量子力学和计算机科学等领域带来了举足轻重的影响。本书作者以生动细腻的笔触,将素数的故事娓娓道来。阅读本书不仅能像聆听音乐那样,无须具备数学专业背景即可领略数学之美,而且还能近距离体会数学家的心路历程,以及他们之间竞争与合作的复杂关系,从而对数学家这一群体有更深刻的了解。
本书是面向各年龄层次数学爱好者、以及自认为"数学不好的人”的一本科普书。 本书的创作宗旨在于选择有趣且不太为人熟知的数学问题,从有意思的角度切入讲解问题,力求以浅显和生动的语言,将较为高深的数学知识介绍给读者,使读者不但能理解这些问题,更能获得思路继续研究和赏玩,从而获得更多乐趣。让读者摆脱数学恐惧症,建立数学思维,爱上学数学。作者也将数学家攻克此问题的过程中所遇到的困难,解决困难的思路一一整理,呈现给读者。让读者既能有读"历史”书一般的趣味,也能感受数学家的高超思维模式与某些问题的意外困难。 本书涉及的数学问题方面很广,包含数论,图论,微积分,概率论,博弈论,物理中的数学等等,按话题内容方向组织为8章,基本按从易到难排列。其中末章"历史趣味”是泛数学文化方面的话题,有
本书从贝叶斯理论的基本原理讲起,逐步深入算法、机器学习、深度学习,并配合项目案例,重点介绍了基于贝叶斯理论的算法原理,及其在机器学习中的应用。 本书分为10章,涵盖了贝叶斯概率、概率估计、贝叶斯分类、随机场、参数估计、机器学习、深度学习、贝叶斯网络、动态贝叶斯网络、贝叶斯深度学习等。本书涉及的应用领域包含机器学习、图像处理、语音识别、语义分析等。本书整体由易到难,逐步深入,内容以算法原理讲解和应用解析为主,每节内容辅以案例进行综合讲解。 本书内容通俗易懂,案例贴合实际,实用性强,适合有一定算法基础的读者进阶阅读,也适合其他人作为爱好阅读。
在了解这个世界的过程中,现实经常会挑战我们的感官和直觉,让我们震惊不已。这时,数学*像一把雨伞,当撑开这把雨伞时,我们仿佛进入了一个奇特的境界,有了迈向真相、行走在谜团中的勇气;当收起这把雨伞时,我们会发现自己的认知已大不一样,所谓的“理所应当”和“显而易见”将被摒弃,现实背后隐藏的真相将带来巨大的启发。这*是数学的力量。 从代数、几何到相对论,从温度计到黑洞,作者用简洁而生动的笔触阐释了如何更好地思索、观察与理解世界。让我们带上好奇心,撑开数学这把大伞,在宇宙的奥秘中漫步,体会解开疑惑后,如雨过天晴般的愉悦。
你觉得数学很无聊吗?再想想。 这本书以趣味的方式讲述了代数学和微积分的故事,探索了数个世纪以来令人惊讶的数学发展过程。你知道布尔代数吗?它只使用了两个数字:1 和 0。在布尔运算中,1 1 总是等于 1。尽管这看起来很奇怪,但这种代数方法被用于在每个微芯片中创建纳米级的电路。此外,我们将会遇到像丢番图和牛顿这样的天才,他们成功地将数学问题转化为通用的技术手段;还会看到古埃及测绘者如何测量土地,欧几里得的《几何原本》为何至今仍未过时,计算机芯片如何处理程序,以及高斯如何在不到 1 分钟的时间里计算出 1 到 100 之间的所有数字相加的和 当时他只有10岁! 这本书旨在激发读者对数学的热情。
苹果有 3 个,蜜橘有 3 个,两边 同样 是 3 个。但 苹果 与 蜜橘 并不相同,如何能视为 同样 呢? 数学是一门十分重要的学问,怎样将如此重要的学问表现得直观、形象呢?教科书和习题集上是满满当当枯燥的文字、难懂的公式,犹如一堆没有灵魂的音符,这实在让人遗憾。本书作者巧妙地将图象和数学概念结合在一起,演奏了一曲华美的乐章。与考试和编程中使用的微积分知识相比,本书的内容相对简单,但不失趣味地揭示了微积分 细细切分、密密汇集 的思想,并十分形象地讲述了最值、极限、斜率、函数等知识。 奇幻旅程开始啦!
《数学与生活(修订版)》以生动有趣的文字,系统地介绍了从数的产生到微分方程的全部数学知识,包括初等数学和高等数学两方面内容之精华。这些知识是人们今后从事各种活动所必须的。书中为广大读者着想,避开了专用术语,力求结合日常逻辑来介绍数学。读来引人入胜,枯燥之感。从中不但可得益于数学,而且还可学到不少物理、化学、天文、地理等方面的知识。
本书基于麻省理工学院开设的概率论入门课程编写,内容*,例题和习题丰富,结构层 次性强,能够满足不同读者的需求。书中介绍了概率模型、离散随机变量和连续随机变量、多元随机变量以及极限理论等概率论基础知识,还介绍了矩母函数、条件概率的现代定义、独立随机变量的和、*小二乘估计等*内容。
勾股定理应该是大家非常熟悉的数学定理,但你知道它在最初被发明时的作用吗?勾股定理早在古埃及时代就被用来测量土地的面积。数学中有非常多的数学定理,它们不仅是数学书中一连串用符号表示的公式,还与我们的日常生活息息相关。本书在介绍了许多比较重要的数学定理的同时,更强调了逻辑思维能力和解决问题能力的重要性。本书适合小学高年级和中学生阅读。
《数学女孩》系列以小说的形式展开,重点描述一群年轻人探寻数学中的美。内容由浅入深,数学讲解部分十分精妙,被称为 绝赞的数学科普书 。 《数学女孩5:伽罗瓦理论》从鬼脚图讲起,结合二次方程式的求根公式、尺规作图、群和域等知识,最终带领读者进入伽罗瓦理论的世界,还原伽罗瓦短暂的一生中璀璨不朽的数学成就。整本书一气呵成,非常适合对数学感兴趣的初高中生以及成人阅读。
本书以数学游戏为基础,以培养孩子逻辑思维能力为目的,将数学与逻辑思维启蒙所需的知识点融入游戏之中,以孩子乐于接受的游戏形式展现,有助于培养孩子对数学与逻辑思维的兴趣。本书结合低学段儿童的认知规律,将内容设置为三个部分:第一部分,漫步让人大开眼界的神秘图形世界,讲的是数学世界中的图形之美,有助于空间想象力与创造力的养成;第二部分,运算统计小达人,玩转数学真轻松,讲的是运算与统计方面的数学知识;第三部分:手脑眼并用脑力赛,动手实操更好玩,培养孩子的动手能力。 本书重点开发3~10岁儿童的数学与逻辑思维能力,通过游戏引发孩子对数学、逻辑思维的兴趣,同时融入有助于数学启蒙的各种知识点,更容易被该年龄段的儿童接受。
本书为“数学糖果”系列的第2册,依然秉承“从发散性的思考中寻找乐趣,从系统性的总结中拓展认知”的原则,结合数学史料、趣味科普知识、实际生活经验,配以丰富的卡通图画,展示数学中的20个知识点。 本书内容包括3部分: 无穷、*不利原则、递推等思维小知识;无理数、杠杆、方程等算术小知识;立体图形、皮克公式、帕普斯定理等几何小知识。 牛顿自述是在真理的海边拾捡漂亮贝壳的孩童。本书在选择知识点时向这个有趣的比喻致敬: 在数学的海边堆积了一些有趣的小石头——书中20个知识点皆与小石头相关。希望在数学的海边漫步的各位读者,可从这堆小石头中收获拾捡钟意之物的乐趣。
本书是哈代于1940年写成的心得之作,展现了数学之美、数学的持久性和数学的重要性三大主题。作者从自己的角度谈论了数学中的美学,给众多数学 门外汉 一个机会,洞察工作中的数学家的内心。作者还讨论了数学的本质与特点、数学的历史及其社会功能等诸多话题。该书被称为是 用优雅的语言对数学真谛进行了充分的揭示 ,原汁原味地向读者展示了一位真正、纯粹的数学家的数学思想,是数学的经典读物。