每一次面试都是针对考生个人情况、具独特性的考核。那么,广大考生需要一本什么样的MEM面试指南呢?我们回顾和分析了大量过往考生的失败案例,并从中发现了不少导致失败的共性因素,例如:备考信息掌握不足,想法太多无从聚焦,目标缺乏合理分解,随意行动偏离计划等。我们发现最终申请能否达到预期目标、取得成功,与考生科学规划及时有效执行的能力相关。因此,帮助广大考生制定一套行之有效的备考计划与执行方案,便成为《MEM面试之道15天通关指南》一书的使命。 本书章着重讲述制定备考规划的方法,后续章节则逐一讲解执行规划的步骤。希望考生通过阅读、学习和实践,能够用正确的方式,走向自己面试的成功之道。
本书带领读者探究黑客的世界,了解这些人的爱好和动机,讨论黑客成长、黑客对世界的贡献以及编程语言和黑客工作方法等所有对计算机时代感兴趣的人的一些话题。
数学与军事有联系吗?全书分6章论述了这个问题。本书作者以丰富的内容和翔实的例证解释了数学与军事的关系,分析了从古到今各种战争的性质,常规战、核战争、现代战争中所涉及的数学问题,以及如何用数学方法分析和描述战争,研究战争的过程,司令官怎样指挥和决策,又如何建立战斗模型和用数学方法预测战争的胜负,最后一章宏观地论述了一个国家的经济和国防的力量对战争的影响等。书中还对中、美、苏的关系作了数学分析。
本书主要讲述大范围黎曼几休的研究中具有重要意义的五个专题。内容包括:Hodge理论,和乐群,非紧非负曲率流形的结构,Gauss-Bon 定理,黎曼流形的收敛性等。本书反映了大范围黎曼几何研究的概貌,有些内容是以讲义的形式作系统的讲解。例如,详细给出Hodge定理的一个完血的初等证明;比较全面地缩述和乐群理论的过去和现状,以及在当代几何研究中的应用;剖析了东省身关于Gauss-Bon 定理的内在证明;介绿了Gromov关于黎曼流形收敛性的理论,把读者带进大范围黎曼几何的领域。 本书余术条理清楚,推理严谨,富有启发性,本书还特别注重介绍黎曼几何的历史背景、基本
这是一部漫画故事书,取材于声名显赫的哲学家伯特兰?罗素,讲述了他的早年生活以及他对真理满怀激情的追求过程。家族秘密和无法驱除的好奇心一直困扰着罗素,使他着迷于一个盗火者普罗米修斯式的目标:建立所有数学的逻辑基础。这个目标惠及人类,却令他自己痛苦、疯狂。在这种痛苦地探寻真理的过程中,罗素与很多传奇思想家相遇了,诸如阿尔弗雷德?诺夫?怀特海,戈特洛布?弗雷格和库尔特?哥德尔,以及他充满热情的学生、声名显赫的路德维希?维特根斯坦。 ??《疯狂的罗素》既是一部历史小说,也是一本逻辑学、数学的导引书,通俗易懂地介绍了数学和逻辑学中一些*伟大的思想。书中用丰满的人物形象、富于表现力和感染力的漫画、扣人心弦的故事,展示了这些20世纪的思想者追求真理的历程,一个个迷人的故事让我们感受与这些思想者一起探险
An appropriate coverage of the subjects contained in the five parts of thiook would need several monographs. We hope that the global treatment presented here may emphasize some of their deep interactions. As far as possible we present self-contained proofs; we have also tried to produce a book that could be used in a graduate course.
全书包括两大部分,共分9章。部分为有限元分析基本原理,包括~5章,内容有:绪论、有限元分析过程的概要、杆梁结构分析的有限元方法、连续体结构分析的有限元方法、有限元分析中的若干问题讨论;第2部分为有限元分析的典型应用领域,包括第6~9章,内容有:静力结构的有限元分析、结构振动的有限元分析、传热过程的有限元分析、弹塑性材料的有限元分析。《有限元基础教程》以基本变量、基本方程、求解原理、单元构建、典型例题、MATLAB程序及算例、ANSYS算例等一系列规范性方式来描述有限元分析的力学原理、程序编制以及实例应用;给出的典型实例都提供了完整的数学推演过程以及ANSYS实现过程。《有限元基础教程》的基本理论阐述简明扼要,重点突出,实例丰富,书中的两部分内容相互衔接,也可独立使用。适合于大学高年级学生作为课程教材,
本书试图在数学和工程实际之间架起一座桥梁,给广大的初学者和工程技术人员提供重要的基本概念、清晰的数学构架、重要的方法工具和典型的应用范例。大量的物理场,包括数量场、矢量场和张量场是本书的研究对象;Hamilton算子是描述场与空间相互作用的统一工具;而各种不同的坐标系则是场发挥作用的不同场合。于是,场、算子和坐标系构成了本书的主要内容。本书从最基本的矢量概念讲述到高维Stokes定理,内容上的大跨度可以适合各类读者的需要。书后完备的附录也给广大工程技术人员带来很大的方便。 本书适合广大理工科的本科生和研究生学习使用,对于相关专业的科技人员也将是十分有益的入门读物和工具书。
The study of orthogonal polynomials of several variables goes back at least as far as Hermite. There have been only a few books on the subject since: Appell and de Feriet [1926] and Erdelyi et al. [1953]. Twenty-five years have gone by since Koornwinder's survey article [1975]. A number of individuals who need techniques from this topic have approached us and suggested (even asked) that we write a book accessible to a general mathematical audience. It is our goal to present the developments of very recent research to a readership trained in classical analysis. We include applied mathematicians and physicists, and even chemists and mathematical biologists, in this category.
《2019MBA MPA MPAcc管理类联考综合能力辅导:逻辑分册》的编写紧扣联考《考试大纲》中关于逻辑部分的要求,努力将《考试大纲》中所规定的逻辑基本知识讲解透彻,使考生在掌握必要的逻辑基本知识的基础上学会运用这些知识来解决具体问题。 《2019MBA MPA MPAcc管理类联考综合能力辅导:逻辑分册》由三部分组成。部分讲解联考《考试大纲》中规定的逻辑基本知识,以及如何运用这些知识来做题;第二部分模拟逻辑考试,提供若干单元综合训练试题,供考生强化训练使用;第三部分提供最近几年联考逻辑真题及其解析,以便考生能熟悉联考逻辑真题的特征。
本书是测度论和概率论领域的名著,行文流畅,主线清晰,材料取舍适当,内容包括测度和积分论、泛函分析、条件概率和期望、强大数定理和鞅论、中心极限定理、遍历定理以及布朗运动和积分等,全书各节都附有习题,而且在书后提供了大部分习题的详细解答。 本书可作为相关专业高年级本科生或研究生的双语,适合作为一学年的教学内容,也可选用其中部分章节用作一学期的教学内容或参考书。
《东西数学物语》是集数学历史典故、故事、游戏、趣味图形和计算题为一体的科普著作,从古代中国、西方、印度和日本等国家的数学史文献中精选了300多道经典问题,同时对不同国家的同类问题进行了比较,并尽可能地考证了有关问题,该书是数学教育和数学史研究的珍贵资料,但是,由于作者的历史条件的局限性,原著中也存在有些年代和观点方面的错误,在翻译中纠正了这些错误。 对中国和我国的古典原著能够追溯考察,对西方的问题未能完全做到。尽管如此,还是尽可能地收集了丰富的资料。倘若拙著能成为我国数学教育的新文献,那就是格外庆幸的了。