本书是一本可以激发读者数学兴趣,启迪数学思维,开阔知识眼界的妙趣横生的数学科普读物。 全书共五章,从不同角度诠释数学之美。 第一章:生活中美丽的数学 从日常点滴中窥见数学之美。从投资理财到项目管理,从密码学到代数几何,数学已渗透到我们生活中的每一个角落。 第二章:上帝的骰子 排列组合与概率 用生动有趣的案例带你领略概率的巧思与随机的神奇。 第三章:囚徒的困局 逻辑推理、决策、斗争与对策 带你体验推理、决策、博弈的乐趣,做一把福尔摩斯 第四章:中外古代趣题拾零 追寻古圣先贤的足迹,带你体会中外数学的智慧 第五章:当数学遇到计算机 从计算机的二进制世界到数码相片,从5G通讯到区块链的实现,本章带你从高科技中发现数学的智慧之光。
本书为日本数学家、菲尔兹奖得主广中平?v的思想文集。书中以“创造性思维”为线索,讲述了作者在数学研究中总结出的思考模式——“可变思考”,并在问题的发现、提出、整理、转换等方面做了具体阐述,让读者了解数学家独特的多维度思考方法。同时,本书还对日本数学教育中的问题做了分析,提出了学校教育、亲子教育中培养创造性思维的原则与方法。本书是广中平?v先生对自己研究方法的系统性总结,是了解其思想以及日本数学研究方法的珍贵资料。
数学是一门求真与求美的学科。数学对于解释大自然的纷繁现象具有基本的重要性, 兼具诗歌与散文的内在气质。 《数理人文》为数学家丘成桐先生主编的一系列科普读物,以数学、物理及工程为经,人文艺术为纬,旨在引导读者领略数理之美,感悟人文之魅力,启迪数理与人文相结合之思维,培养广泛的兴趣和独立思考能力。
无穷大到底有多大?空间有内外之分吗?原子是如何构成的?三维世界的我们如何想象四维空间?生物与非生物的界限在哪里? 《从一到无穷大》以生动有趣的语言,深入浅出地介绍了数学、物理学、生物学及天文学的基本概念与前沿知识。从基础的数学概念如大数与无穷大,到相对论、量子力学等深奥理论,再到生物遗传、宇宙结构等宏大议题,通过一个个故事串联,将复杂的科学概念变得易于理解,让我们在享受阅读乐趣的同时,拓宽科学视野,领略自然科学的魅力。无论是对科学感兴趣的初学者还是有一定科学基础的读者,都能从中受益匪浅。
本书是 对整个数学领域中的基本概念及方法的透彻清晰的阐述。 ■ A 爱因斯坦 本书既是为初学者也是为专家,既是为学生也是为教师,既是为哲学家也是为工程师而写的。《什么是数学》是一本数学经典名著,它搜集了许多闪光的数学珍品,它们给出了数学世界的一组有趣的、深入浅出的图画。本书传至今日,又由I 斯图尔特增写了新的一章。此版以新的观点阐述了数学的*进展,叙述了四色定理和费马大定理的证明等。这些问题是在柯朗与罗宾写书的年代尚未解决,但现在已被解决了的。 形式数学(formal mathematics)就像拼写与语法 只是对局部规则(local rules)的正确使用。有意义的数学(meaningful mathematics)有如新闻工作 它只讲述有趣的故事,但又不像某些新闻报道,因为它的故事必须真实。而*美的数学(the best mathematics)则如文学 它将故事栩
《神奇的数学:牛津教授给青少年的讲座》是作者在一系列针对青少年的数学普及讲座内容基础上汇集整理的一本数学科普书,介绍了一些数学中很有神秘色彩的知识,内容浅显易懂,语言生动活泼,很容易激发读者尤其是青少年读者了解数学的兴趣。 《神奇的数学:牛津教授给青少年的讲座》适合所有对数学知识感兴趣的读者。
说到三角函数或正弦、余弦、正切等,为了应付考试而死记硬背公式但并不十分明白的人也不在少数。也有人明明学习了,但觉得在生活中一次也没有用到过三角函数。 其实人们生活在现代社会,肯定受到过三角函数的“恩惠”。因为从网络上的动画制作到地震速报,很多技术的基础都是三角函数。 本书通过对三角函数的起源与使用方法,以及从三角函数中诞生的实用数学的“代表选手”??“傅里叶分析”的原理等进行挖掘,形成了内容较为充实的一册“三角函数”科普读物。 第一章在说明三角函数之前,对三角形的性质及使用方法,以及三角函数的起源进行介绍;第二章则对三角函数的基础知识(三角比)进行清晰的解释;在第三章中介绍了相关的重要定理并对古代数学家进行的三角函数研究进行介绍;在第四章中脱离“三角形”的束缚,对三角函数的定义进
许多人在中学数学课堂上学习过 “微积分”。 微积分是用来计算“变化”的数学,在计算如位置的变化、速度的变化、股价的变化等多种变化时,微积分发挥着重要作用,甚至可以说微积分几乎是不可或缺的。 本书在第1章中,对微积分的精髓进行了精要讲解。在接下来的第2章中,追溯微积分诞生的时代背景及数学家的思考,探究复杂的微积分符号和计算方法。另外,还会介绍牛顿和莱布尼茨之间关于微积分发明权归属之争、牛顿的巨著《自然哲学的数学原理》,以及微积分之谜等有趣的话题。最后,第3章收录了微积分的计算问题和微分方程式等应用实例,可以从中切实感受到微积分的作用。
本套丛书由科普市场占有率领先的「未读 探索家」推出,集结品牌10年来10部经典数理科普作品,涵盖数学(《无言的宇宙》)、物理(《茶杯里的风暴》《看不见的光》)、化学(《元素的盛宴》《诗意的原子》)、天文学(《140亿年宇宙演化全史》《太空飞行课》)、材料学(《迷人的材料》《迷人的液体》)、科学思维(《发现的乐趣》)等诸多主题。 丛书作者均为来自世界大师级科普 明星 ,如诺贝尔物理学奖得主理查德 费曼,世界天体物理学明星、 卡尔 萨根 接班人尼尔 泰森,NASA资深宇航员汤姆 琼斯,把科学史写得像小说一般精彩的作家山姆 基恩等。每一册均科学与人文交融,知识与趣味并茂,是追求前沿新知、跨学科融合阅读的上佳选择。
你是擅长数学还是害怕数学呢?可能有很多人对数学持有这样的印象??“不知道在学校学到的数学有什么用”。在现代社会里,各种各样的数学工具非常丰富。本书对其中的“对数”和“向量”这样非常实用的工具进行介绍。 “对数”作为可以简化计算的工具在16世纪就已诞生,在没有电子计算机的时代,对数成为自然科学发展的基石。到今天,对数除了作为单纯的计算工具,还出现在现代科学的各种场合里,支持社会发展。“向量”是表述“同时具有大小和方向的量”的概念,在包含物理学在内的很多科学领域起到巨大作用。
法国数学家笛卡儿提出被称为现实中不存在的“想象中的数”。这就是高中数学中涉及的“虚数”概念。虚数有何奇妙之处呢?无论是正数还是负数,平方之后必然为正;而虚数则是“平方为负”,这样的数在哪里都找不到。为什么要学习虚数呢?这是因为在数学中虚数发挥着极其重要的作用,如果没有虚数,那数字的世界就不完整了。而且即使是对于解析微观世界的量子力学而言,虚数也是不可或缺的存在。如果没有虚数,甚至连1个电子的运动都无法正确得知。
近来,被称为“数据科学家”的研究者备受关注,充分运用数据进行分析,变得越 来越重要。这种活用数据的基础便是“统计与概率”。 统计与概率,不仅对于研究者,对于生活在现代社会的所有人来说都是可以在现实 生活中发挥重要作用的知识。在日常生活中,正确解读数据,从而进行合理的判断,也 是依靠概率和统计的思考方法。 在本书中,以我们身边的话题作为案例,介绍以统计与概率为基础的重要数学方法, 并对于因人工智能的蓬勃发展而备受瞩目的“贝叶斯统计”,也介绍其思考方法与应用实 例。此外,本书还对概率论起源于 17 世纪欧洲的博彩问题,以及“统计大师”汉斯?罗 斯林博士的访谈、随机和随机数的深奥的问题等进行了介绍,希望与读者一同洞悉统计 与概率的本质。
本书是 对整个数学领域中的基本概念及方法的透彻清晰的阐述。 ■ A 爱因斯坦 本书既是为初学者也是为专家,既是为学生也是为教师,既是为哲学家也是为工程师而写的。《什么是数学》是一本数学经典名著,它搜集了许多闪光的数学珍品,它们给出了数学世界的一组有趣的、深入浅出的图画。本书传至今日,又由I 斯图尔特增写了新的一章。此版以新的观点阐述了数学的进展,叙述了四色定理和费马大定理的证明等。这些问题是在柯朗与罗宾写书的年代尚未解决,但现在已被解决了的。 形式数学(formal mathematics)就像拼写与语法 只是对局部规则(local rules)的正确使用。有意义的数学(meaningful mathematics)有如新闻工作 它只讲述有趣的故事,但又不像某些新闻报道,因为它的故事必须真实。而美的数学(the best mathematics)则如文学 它将故事栩栩
在《x的奇幻之旅》中,*数学家、《纽约时报》专栏作者史蒂夫?斯托加茨,引领我们踏上一段领略伟大的数学思想的赏心悦目之旅。沿途中你会看到数学如何与文学、哲学、法律、医学、艺术、商业彼此交融,甚至流行文化也能以我们意想不到的方式和数学共舞。
这本书讲述了从古希腊时期到20世纪,34位重要数学家的传奇人生。看他们如何用短暂的生命创造出永恒的智慧;用理性与意志的碰撞,迸发出闪耀人类的精神之光。 数学是一门学科,而数学家是一种精神! 沿着他们深刻、动人的生命轨迹,我们不仅可以了解所有重要数学理论的来龙去脉,更可以感悟 理性思考 赋予人生的巨大能量;见证 不屈意志 成就人生的高光时刻。 翻开本书,我们将以巨人的视角重新审视世界和人生,从而收获头脑上的清晰缜密,和精神上的顽强壮大,点亮 理性思考 与 不屈意志 的火种!
证明是数学思想中最重要,也是极具开拓性的特征之一。没有证明,就无法谈论真正的数学。本书讲述了证明的演变及其在数学中的重要作用和启发意义。从古希腊几何学时代开始,涵盖代数、微积分、集合、数论、拓扑、逻辑等几乎全部数学分支中的证明故事。我们将看到欧几里德、康托尔、哥德尔、图灵等数学大师的精彩发现和发明。这本书不是教材,它是在讲数学的历史,更是在讲数学思想的演变。作者揭示了数学学习和研究的底层方法和逻辑,让读者看到在数学中什么定理可以被证明,如何证明?什么问题可以(或无法)被解决?为数学研究和发展打开全新的视角。
牛顿于1687年所发表的《自然哲学的数学原理》这一巨著,是他科学工作的*之作,也是人类科学*重要的经典著作之一。这部经典著作共有三卷。*卷首先定义什么是惯性、动量、力,然后陈述三个运动定律──即通常所说的牛顿运动定律。接着牛顿讨论了一些微积分定理,但是以古典的几何方式加上极限的概念所表现的。介绍了新的数学工具后,牛顿就开始讨论平方反比向心力与开普勒运动定律之间的互导、椭圆与椭圆运动的性质、各种摆线的几何性质、两物体间因引力而发生的运动、球体对质点的引力及三体运动等等。第二卷所讨论的是阻力之下的运动,这是流体力学的开端。第三卷则是把*卷的数学结果运用到自然现象上。运用这种理论方法,牛顿得到许许多多的结果。这些结果可以解释许多自然现象,譬如潮汐、月球的不规则运动、岁差等等;有些则预测一些
本书主要面向学有余力的小学高年级学生、中学生以及其他数学爱好者,从有趣的数学故事出发,由浅入深地介绍数论、代数、几何和组合数学等主要内容,并对概率、拓扑等内容进行了有益的拓展。同时,本书再现了多个与数学原理相关的历史、文化、科学和艺术场景,展现了数学之美以及数学和人文科学的统一。本书综合趣味性和可读性,以可以启发读者自主思考的方式 提供分析和解决问题的思路,使读者能够举一反三、开拓思维。 本书可以作为学生的课外读物,也可作为数学爱好者进行数学思维训练和补充数学知识的资料。
《数理人文(1辑)》 数学是一门求真与求美的学科。数学对于解释大自然的纷繁现象具有基本的重要性, 兼具诗歌与散文的内在气质。 《数理人文》为数学家丘成桐先生主编的一系列科普读物,以数学、物理及工程为经,人文艺术为纬,旨在引导读者领略数理之美,感悟人文之魅力,启迪数理与人文相结合之思维,培养广泛的兴趣和独立思考能力。 《我的教育观(丘成桐作品)》 数学家、教育家丘成桐谈教育 直击中国教育痛点 不容错过的丘成桐学习法 走入丘成桐的内心世界,看一位数学家的志气与操守 本书是国际数学师丘成桐的作品,通过自己的成长经历和人生感悟,真诚给出面向未来的教育解决方案。 他从自己的家学渊源讲起,回顾了自己人生中的重要时刻。年幼时候条件艰苦,仍坚持追求学问;遇到数学难题寂寞坚持,终于攻克难关,登上数学高峰;
本书是哈代于1940年写成的心得之作,展现了数学之美、数学的持久性和数学的重要性三大主题。作者从自己的角度谈论了数学中的美学,给众多数学 门外汉 一个机会,洞察工作中的数学家的内心。作者还讨论了数学的本质与特点、数学的历史及其社会功能等诸多话题。该书被称为是 用优雅的语言对数学真谛进行了充分的揭示 ,原汁原味地向读者展示了一位真正、纯粹的数学家的数学思想,是数学的经典读物。