本书与以往统计学中的概率论略有不同,添加了一些复杂数据类型的概率基础知识和模拟计算中的相关概率知识。具体安排如下所述。本书共分6章。第1章为概率与计数,基本内容是随机事件、概率空间、计数方法、概率的确定方法。第2章为条件概率,基本内容是条件概率与乘法公式、事件的独立性、全概率公式与贝叶斯公式。第3章为随机变量,基本内容是随机变量及其分布函数、随机变量的分类、二维随机向量、随机变量的独立性、随机变量函数的分布。第4章为常用的概率分布,基本内容是常用的离散型随机变量、常用的连续型随机变量、随机数的产生。第5章为随机变量的数字特征,基本内容是数学期望、方差和协方差、矩和矩母函数、条件期望。第6章为不等式和极限定理,基本内容是概率不等式、大数定律及其应用、中心极限定理。
《SQL即查即用》从实用角度出发,由浅入深地讲解了SQL的基本概念、常用语法和操作技术。全书共24章,包括数据的简单查询、条件查询、模糊查询、过滤数据以及数据排序、分组、统计等内容,还包括子查询、多表连接、数据的增删改查、视图、存储过程、游标、事务处理以及数据库和数据表的管理等高级技术。包括200多个SQL语法,200多个应用示例。有很强的实用性和可操作性,既适合作为SQL初学者的学习用书,又适合作为程序开发人员和数据库管理人员随时查阅的参考工具书。为便于读者对SQL语法的理解,书中所有知识点和语法都结合具体示例进行讲解,并以对比图方式鲜明直观地展示数据变化,帮助读者快速掌握实际操作技巧,学以致用。书中还设置了注意、说明、常见错误、多学两招等贴心栏目,及时指出注意事项并给出相应的解决方案,帮助读者避开学
本书从初学者易于理解的角度,以通俗易懂的语言、丰富的实例、简洁的图表、传统和现代数据特征的对比,将大数据这一计算机前沿科学如数家珍地娓娓道来。既介绍了大数据和相关的基础知识,又与具体应用有机结合起来,并借助可视化图表的画面感立体地为读者剖析了大数据的技术和原理,非常便于自学。本书内容包括大数据概论、大数据采集及预处理、大数据分析、大数据可视化、Hadoop概论、HDFS和Common概论、MapReduce概论、NoSQL技术介绍、Spark概论、云计算与大数据、大数据相关案例等内容。本书既可以作为想了解大数据技术和应用的初学者的教材,也适合作为培训中心、IT人员、企业策划和管理人员的参考书。
本书内容分为八章,基本涵盖了目前较为常用的数据科学建模方法,包括现在热门的深度学习。书中不仅介绍模型的理论基础,还以大量案例结合现实数据为读者展示了数据分析中常见任务的处理流程,如分类、回归、聚类、推荐、图片识别等,帮助读者应用这些模型和方法解决实际问题。 第1章首先对数据科学的任务和重要性进行了概述,接着介绍数据科学的建模流程以及Python语言开发环境与常用库; 第二章介绍了回归模型,包括线性回归和逻辑回归模型; 第三章介绍了聚类模型,包括k-means算法、DBSCAN算法和DIANA算法; 第四章介绍了关联规则分析,包括Apriori算法和FP-Growth算法; 第五章介绍了决策树模型,包括ID3、C4.5和CART算法及树的剪枝方法; 第六章介绍了支持向量机,包括线性和非线性支持向量机以及向量机的求解与多分类问题; 第七章介绍