《谁说菜鸟不会数据分析》(入门篇)是一本有趣的数据分析书!本书基于通用的Excel工具,加上必知必会的数据分析概念,以小说般通俗易懂的方式讲解。本书基于职场三人行来构建内容,完全按照数据分析工作的完整流程来讲解。全书共8章,依次讲解数据分析必知必会知识、数据分析的结构化思维、数据处理技巧、数据展现的技术、提升图表之美的专业化视角,以及专业分析报告的撰写方法等内容。本书有足够的魅力让你一口气读下去,在无形之中掌握数据分析的技能,提升职场竞争能力。本书能有效帮助职场新人提升职场竞争力,也能帮助市场营销、金融、财务、人力资源管理人员及产品经理解决实际问题,还能帮助从事咨询、研究、分析行业的人士及各级管理人士提高专业水平。
《问卷数据分析:破解SPSS软件的六类分析思路(第2版)》系统介绍了使用SPSS软件进行问卷数据分析的思路及方法,分为四部分,分别是问卷设计、六类问卷分析思路、数据分析方法在SPSS软件中的操作和答疑解惑。其中问卷设计部分适用于所有读者,建议读者在设计问卷前详细阅读这部分内容。读者可以结合实际情况选读六类问卷分析思路部分的内容。数据分析方法在SPSS软件中的操作部分详细讲解了各类数据分析方法在SPSS软件中的操作细节,并且对输出结果进行说明。答疑解惑部分罗列了使用各类分析方法时常见的疑难杂症,并且提供了解决方法。本书侧重于问卷分析的应用性,力求让读者在*短的时间内掌握使用SPSS软件分析问卷数据的方法并完成高质量的问卷数据分析报告。 使用SPSS软件分析调查问卷数据常见于各类学术研究、论文写作、企业市场调研和各类
数据是数字经济的关键生产要素与核心资源。数据要素市场的培育是一个动态演化和持续迭代的过程,而信任的建立是市场建设的关键一步。本书通过“信任”这一视角,对数据流通进行全方位的解读,对中国数据要素市场的建设实践进行回顾与展望。基于“TIME”分析框架,对数据可信流通技术、数据流通机构、可信的数据流通模式以及促进数据可信流通的治理方案进行全面系统的介绍。本书旨在为数据要素市场参与者、数字经济从业者、数据治理人员以及关注数据流通交易的读者提供实用的参考,帮助他们理解数据流通的可行模式,破解数据要素市场发展难题,充分释放数据要素流通潜力,赋能实体经济高质量发展。
本书全面介绍车辆轨迹数据的处理、分析与可视化方法,并深入探讨了基于Python的车辆轨迹数 据处理技术,旨在帮助读者快速掌握车辆时空轨迹数据处理的基本方法和编程技巧,同时提供丰富的实际案例和技术解决方案,覆盖了从数据采集到深入分析的完整技术链条,是交通时空大数据领域车辆轨迹数据处理分析的全面指南。 本书内容涵盖从车辆轨迹数据的基本特征、采集原理到预处理、质量分析、可视化,再到高级应用如路网匹配、排放计算、多智能体仿真,以及特定案例分析如电动汽车充电需求识别和无人机航拍轨迹数据分析。 本书适合计算机相关专业的学生、数据分析师、研究人员以及技术开发人员阅读。
本书由浅入深,全面系统地介绍了Wireshark数据抓包和数据包分析。本书提供了大量实例,供读者实战演练Wireshark的各项功能。同时,对抓取的数据包按照协议层次,逐层讲解各个协议在数据包中的体现。这样,读者就可以掌握数据包抓取到信息获取的每个环节。 本书共分3篇。第1篇介绍Wireshark的各项功能,包括基础知识、Wireshark的定制、捕获过滤器和显示过滤器的使用、数据包的着色、导出和重组等;第2篇介绍基于Wireshark对TCP/IP协议族中常用协议的详细分析,如ARP、IP、UDP、TCP、HTTP、HTTPS和FTP等;第3篇介绍借助Wireshark分析操作系统启动过程中的网络通信情况。 本书涉及面广,内容包括工具使用、网络协议和应用。本书适合各类读者群体,如想全面学习Wireshark的初学者、网络管理员、渗透测试人员及网络安全专家等。对于网络数据分析人士,本书更是一本
数据、模型与决策是应用数学建模和计算机技术帮助决策者解决问题。作为国外一本优秀的数据、模型与决策的教材,本书具有以下特色: 1.对枯燥、复杂和技术化的数学问题用简明易懂的语言予以解释,兼顾严谨的数理逻辑。 2.突出建模分析框架和基础逻辑的讲授和训练,在某种程度上实现了艺术与科学的有机融合。 3.课后习题丰富,并配有网络题库,供自学者加强训练,及时检查对理论模型及其求解方法的掌握程度。 第12版把修订重点放在企业和组织的*技术发展上,增加了商业分析(第1章)、项目风险(第8章)以及数据挖掘(第14章)等内容。
《基于Python的大数据分析基础及实战》是一本介绍如何用Python 3.6进行数据处理和分析的学习指南。其主要内容包括:Python语言基础、数据处理、数据分析、数据可视化,以及利用Python对数据库的操作、自建Python应用库的共享发布等。 《基于Python的大数据分析基础及实战》分3个部分:第1部分为基础知识,第2部分为实战案例,第3部分为拓展与延伸。本书内容丰富,讲解通俗易懂,非常适合本科生、研究生,以及对Python语言感兴趣或者想要使用Python语言进行数据分析的广大读者。
本书共8章,立足于能源大数据领域核心业务,介绍了世界及中国的能源格局及能源转型背景,阐述了大数据技术的基本原理及其在能源领域的规划、预测等应用中开展实践情况,系统阐明能源大数据中心建设关键问题,深入讲解碳核算方法学。同时向读者说明了能源大数据在服务于 双碳 管理、政府治理中起到的关键作用,展示了能源大数据领域的实践成果和经验。
数字经济已成为各国经济增长的新动能,并上升为国家发展战略,各国政府和人民对数据跨境流动安全问题的关注与日俱增。本书系统介绍了全球数据跨境规则的产生背景及其发展演变的脉络,重点分析了全球主要国家和地区数据跨境治理规则的内容和相互之间的异同,特别介绍了欧盟、美国话语权下的数据跨境流动规则及规则间的弥合,也介绍了其他国际性文件及十余个重点国家和地区的立法现状,同时展望了全球数据跨境规则的未来走向,在此基础上对我国的数据跨境流动治理规则现状进行梳理,并对其实施与完善提出了相关建议。本书语言平实易读,主要以法律法规、执法部门的解释性指南、判决书等一手资料作为参考,介绍分析了国内外立法现状和法律实践。
本书从初学者易于理解的角度,以通俗易懂的语言、丰富的实例、简洁的图表、传统和现代数据特征的对比,将大数据这一计算机前沿科学如数家珍地娓娓道来。既介绍了大数据和相关的基础知识,又与具体应用有机结合起来,并借助可视化图表的画面感立体地为读者剖析了大数据的技术和原理,非常便于自学。本书内容包括大数据概论、大数据采集及预处理、大数据分析、大数据可视化、Hadoop概论、HDFS和Common概论、MapReduce概论、NoSQL技术介绍、Spark概论、云计算与大数据、大数据相关案例等内容。本书既可以作为想了解大数据技术和应用的初学者的教材,也适合作为培训中心、IT人员、企业策划和管理人员的参考书。
R语言在心理语言学研究中的应用已经有相当长的历史,但什么情况下要对数据进行怎样的处理,模型应该如何构建,得到结果后应该如何科学地读取和规范地报告等问题仍未得到很好的解决,本书意在解决这些问题。 本书首先介绍了R语言基础知识、基本统计思路和初步数据整理,对经由真实眼动研究得到的数据进行清理、转换和描述性统计,以及数据可视化等操作,然后介绍了线性混合模型和最大随机效应,结果解释、整理和提升,power分析和Bayes分析在R语言中的实现;接着介绍了线性混合模型和重复测量方差分析结果的比较;最后介绍了多种眼动指标整理的方法。
面对小数据和大数据,数据分析师应该如何收集数据信息?传统的业务框架如何与统计学相关联?测量学扮演着什么角色?建模过程有哪些预分析技术和修正技术?建模工作完成后,如何解析?如何归因?如何预测?等等,这些数据分析能力构成了本书的分析框架。本书分为8章,小数据与大数据分析模式的动态切换贯穿全书,展示了数据分析案例的模块化分析思路。第1~3章为数据预分析部分,强调业务问题与统计问题的衔接;第4~6章为统计建模阶段,其中附有对行业案例和业务敏感度的训练、对统计和业务整合的审美建议,进而构造出一套具有灵活调校的数据分析模式。第7~8章解决的问题是,如何将晦涩难懂的统计解释转换成业务解释。由衷地希望本书能够成为数据运营人员与初中级数据分析师分析数据的行动指南。
技术是把双刃剑,当我们在积极拥抱新技术的同时,也不能忽视其所带来的风险,比如当今大数据时代个人隐私和安全问题。本书是两位作者结合各自出色的专业知识和丰富的从业经验为大众倾力奉献的一本大数据时代隐私问题的普及读物。书中展示了我们在家庭和工作中的日常活动是如何成为大数据收集的一部分的。同时,列举大量的大数据应用以及安全和隐私相关案例,包括企业如何利用大数据进行营销、执法机构如何利用大数据执法等,也包括不法分子如何利用非法或合法的手段获取数据,如何利用社交网络进行犯罪。针对上述问题,本书也列出了一些工具、技巧用来检查和防范,这在当前很有现实意义。
《IBM SPSS数据分析实战案例精粹(第2版)》以IBM SPSS Statistics 24为工具,提供了医疗、金融、保险、汽车、快速消费品、市场研究、互联网等多个行业的数据分析/挖掘案例,基于实战需求,详细讲解了整个案例的完整分析过程,并将模型和软件的介绍融于案例讲解之中,使读者在阅读时能突破方法和工具的限制,真正聚集于对数据分析精髓的领悟。本书还一并提供案例数据的下载,读者可完整重现全部的分析内容。 《IBM SPSS数据分析实战案例精粹(第2版)》适合从初学者到专家各个级别的数据分析人士阅读,包括需要提升实战能力的数据分析专业人士,在市场营销、金融、财务、人力资源管理中需要应用数据分析的人士,从事咨询、科研等工作的专业人士,同时也可以作为各专业的本科和研究生学习数据分析应用的参考书。
本书是为广大数据分析师量身定制的入门读物,它旨在帮助读者站在大数据时代的制高点。数据分析处于统计学、计算机信息科学、运筹学、数据库等多个领域的交叉地带,大数据时代的到来大大丰富了数据分析的内涵,数据分析师的职责与以往相比发生了巨大的改变。本书全面介绍了经典数据分析、模式识别、机器学习、深度学习、数据挖掘、商务智能等多个领域的数据分析算法,将大数据时代的数据分析热点技术一网打尽。本书为每个数据分析算法都搭配了一个经典案例,并按照由易到难的原则构建知识框架,充分照顾了不同水平读者的阅读习惯。通过阅读本书,读者将对大数据时代下的数据分析有一个全面的认识。无论是入门级的数据分析员还是有一定基础的数据分析师,都能通过本书完善、加深对数据分析的认识。
随着中台概念被广泛讨论,其中数据中台又被赋予担任企业智能化任务的重任。当前,不仅是大企业,很多企业都在开始打造或者引入中台,用来解决企业面临的系统重复建设与数据孤岛的问题,在这个过程中,中台产品经理需要做什么事,解决什么问题,又会遇到怎样的困难与挑战? 本书第1~2章讲解了中台起源与数据中台产品需要什么样的能力;第3~6章主要讲解中台中的数据中台的建设与规划、数据分析的方法与策略、数据体系建设方法与应用和企业数据的价值等;第7~9章主要讲解数据平台的需求分析与数据知识、系统平台的建设实战和用户画像体系的建设等内容。
本书的主要内容包括网络数据的定义及相关指标、大规模网络中的链路预测、网络聚类分析、网络数据中的空间自回归模型、大规模网络数据中的模型估计方法、网络数据中的空间自回归模型的拓展及应用、网络中的空间自回归模型的其他研究方向等。本书关注大规模网络数据分析中的模型方法。除模型方法本身的理论拓展之外,在估计方法等方面会涉及大规模数据中的快速计算方法。由于网络分析本身的范围非常广泛,故本书涉及的内容仅局限于作者及团队研究工作中使用到的一部分。在本书的后,为了启发读者思路,对于部分已有网络研究进行了梳理。
本书以LabVIEW 2017为基础,讲述LabVIEW图形化编程语言的原理,以及如何利用LabVIEW完成虚拟仪器设计。全书共15章,分为两篇,分别是基础知识篇(第1~13章)和实际应用篇(第14、15章)。第1章,综述虚拟仪器技术的构建思想和方法论。第2~7章,讲述LabVIEW图形化编程语言的基本原理以及编程方法,内容包括LabVIEW入门、基本数据类型、程序结构、复合数据类型、文件I/O、图形显示及其他技巧。第8~12章,阐述如何利用LabVIEW去控制仪器硬件以实现对被测信号的数据采集,内容包括选择专用的数据采集卡进行数据采集; 利用计算机自带的声卡实现数据采集; 利用摄像头完成图像采集; 仪器控制和控制单片机。第13章,讲述用LabVIEW实现仪器应用的若干算法和信号分析处理的相关知识。第14、15章,介绍利用LabVIEW完成有实际应用背景的两个虚拟仪器项目,分别是用LabVIEW构建函
本书内容围绕股票大数据分析技术展开,主要介绍从不同角度对股票数据进行深度分析并用于实战的方法。 本书首先介绍股票的基本知识以及传统的基本面和技术面分析方法; 之后在每章中结合不同的数据源,从不同角度对股票进行深度分析,介绍相关的数据挖掘算法; 针对数据的特点,提出新的分析思路和计算方法; 结合新方法在股票挖掘平台上的实现对股票的操作进行实战解析。具体内容包括: 基于技术分析指标的买卖点计算方法; 股票时间序列的特征表示方法; 聚类算法与资金流向及主力控盘分析; 筹码分布与筹码分析技术; 财务数据分析与股票的新估值策略; 券商研报评级及其有效性分析; 新闻文本分类和股吧情感分析; 行为金融学与股票行为数据分析; 股票交易决策模型与股票挖掘平台。
本书从Power BI的基础功能讲起,逐步深入到Power BI进阶实战,以业务案例为导向,以Power BI桌面版操作为基础进行讲解,深入讲述Power BI在各个业务部门的应用。本书包括7篇共21章内容,分业务场景进行讲解。第1篇用1章内容讲述Power BI基础操作,方便读者快速入门;第2篇用4章内容讲述如何用Power BI爬取天气、电影、销售、股票等数据;第3篇用4章内容讲述销售部门如何用Power BI分解销售目标,分析业绩达成、会员RFM和业绩构成;第4篇用5章内容讲述产品相关应用,包括存货分析、帕累托分析、关联分析、畅销款分析和数据化陈列;第5篇用2章内容讲述在财务方面的应用,包括盈亏平衡分析和上市公司利润表分析;第6篇用3章内容讲述人力资源应用,包括人员结构及离职率分析、新员工分析和考勤分析;第7篇用2章内容讲述简化报告的技巧。
本书的主要内容是作者及其合作者在复杂数据模型这一领域近些年的研究成果, 以及相关的最新进展. 全书共 6 章. 第 1 章简要介绍几类复杂数据模型和 bootstrap 等预备知识和相关研究问题. 第 2~6 章, 系统讨论各种复杂数据统计推断中的 bootstrap 基本理论、方法及其应用, 包括 Behrens-Fisher问题、异方差回归模型、异方差 ANOVA 和 MANOVA 模型、混合效应模型及高维数据分析中的 bootstrap 统计推断.
这是一本教我们如何制作完美可视化图表,挖掘大数据背后意义的书。作者认为,可视化是一种媒介,向我们揭示了数据背后的故事。他循序渐进、深入浅出地道出了数据可视化的步骤和思想。本书让我们知道了如何理解数据可视化,如何探索数据的模式和寻找数据间的关联,如何选择适合自己的数据和目的的可视化方式,有哪些我们可以利用的可视化工具以及这些工具各有怎样的利弊。 作者给我们提供了丰富的可视化信息以及查看、探索数据的多元视角,丰富了我们对于数据、对于可视化的认知。对那些对设计和分析过程感兴趣的人,本书无疑就是一本书。
全书分为:灵活的数据布局、应用感知及可视化存储智能、存储类芯片、储海钩沉、集群和多控制器、传统存储系统、新兴存储系统、大话光存储系统、体系结构、I/O协议栈及性能分析、存储软件、固态存储等,其中每章又有多个小节。每一个小节都是一个独立的课题。本书秉承作者一贯的写作风格,完全从读者角度来创作本书,语言优美深刻,包罗万象。另外,不仅阐释了存储技术,而且同时也加入了计算机系统技术和网格技术的一些解读,使读者大开眼界,茅塞顿开,激发读者的阅读兴趣。 本书适合存储领域所有从业人员阅读研习,同时可以作为《大话存储*版》的读者的延伸高新资源。
看似佛系,其实只是不思进取;在朋友圈假装热爱生活,真实的自我只敢去微博展露;年初列了无数计划,年底全成了打脸的笑话;人前装得无懈可击,活得却比谁都软弱无力 本书作者赵德昊, 毒鸡汤 公众号创始人,凭借《不会偷懒还假装勤奋,怪不得你又累又穷》《你这不是抑郁,是没钱和缺爱的正常表现》《就算朋友遍天下,你还是个nobody》等爆文圈粉无数。 这些热辣酸爽的金句,引起无数年轻人共鸣,也映照出他们在当下焦虑生活中无力挣扎的现实。61篇犀利扎心的硬核文章,不卖情怀只给解药,愿这些狠话能为你打破思维桎桔,重塑人生。 生活虽不易,但请你干万别假装。