《DAMA数据管理知识体系指南(第2版修订版)》是在DMBOK1和DMBOK2的基础上进行的第三次修订,是DAMA国际对过去30多年数据管理领域领域知识和实践的总结,是一部数据管理基础工具书。本书从数据处理道德规范、数据治理、数据架构、数据建模和设计、数据存储和操作、数据安全、数据集成和互操作性、文档和内容管理、参考数据和主数据、数据仓库和商业智能、元数据管理、数据质量管理、大数据数据科学、数据管理成熟度评估、数据管理组织和角色期望、数据管理和组织变革管理等方面对数据管理知识体系进行了系统介绍,并描述如何在数据管理功能领域中应用这些原则。
《数据库内核揭秘:存储引擎的设计与实现》深入探讨数据库存储引擎内部机制,详细阐述存储引擎在数据管理中的核心作用,包括数据的存储、检索和管理方式。 《数据库内核揭秘:存储引擎的设计与实现》共分为9章,内容从基础概念到高级技术,逐步深入,旨在为读者提供全面的理解框架。前两章为读者打下坚实的基础,介绍数据库系统的概览以及操作系统和硬件设备的相关知识。接下来的章节按照自底向上的逻辑顺序,深入探讨存储引擎的关键模块。第3章讲解数据在文件系统中的组织和存储方式。第4章聚焦于缓冲池的设计和缓存替换算法。作为存储引擎的核心,索引在本书占据了3章的篇幅(第5~7章),详细介绍哈希表、LSM树和B树家族。第8章讨论数据库系统中的故障恢复问题,重点介绍了ARIES算法及其应用。第9章关注事务的并发控制,包括多种并发控制算法
本书是国际数据管理协会(DAMA国际)组织众多国际专家对过去30多年数据管理领域知识和实践的总结,是市场上综合了数据管理方方面面的一部具有性的基础工具书。从数据治理、数据架构、数据质量、数据安全、主数据管理、参考数据管理、元数据管理、商务智能和数据参考管理、数据建模设计、数据存储和操作、数据集成和互操作、文档和内容管理、大数据、数据管理人员的道德要求等方面介绍了数据管理的知识体系。
首席数据官(Chief Data Officer,CDO)是数字时代的产物,它在数字化转型的过程中,以及在转型成功后的数字经济中,都会起到关键作用。本书旨在建立一套相对完整的关于首席数据官的知识体系,帮助读者更好地参与数字时代的发展。 本书分为5篇。 第一篇 CDO概论 介绍CDO产生的背景、发展趋势、主要职责、技能和工作路径等。 第二篇 管好数据 讲解CDO如何管理好数据,涉及数据战略、数据治理、数据制度、数据标准、数据架构、数据质量、数据安全、数据合规、数据建模、数据集成、数据存储、数据分析和挖掘、数据伦理、数据开放与共享等。 第三篇 做好转型 讲解CDO如何做好数字化转型。 第四篇 建好团队 讲解CDO如何构建、领导和考核数据团队。 第五篇 新技术、新模式、新业态 介绍一些与数据及CDO相关的新技术、新模式和新业态。
《深入浅出数据分析》以类似 章回小说 的活泼形式,生动地向读者展现优秀的数据分析人员应知应会的技术:数据分析基本步骤、实验方法、化方法、假设检验方法、贝叶斯统计方法、主观概率法、启发法、直方图法、回归法、误差处理、关系数据库、数据整理技巧;正文之后,意犹未尽地以三篇附录介绍数据分析十大要诀、R工具及ToolPak工具,在充分展现目标知识以外,为读者搭建了走向深入研究的桥梁。 本书通过精心设计的实践场景,让读者不由自主地代入角色当中,真正在体验中学习、思考,将数据分析的要点融化于心,自如地应用在工作和生活中。
本书介绍数据分析的统计基础、种类划分,并列举大量实例以说明数据分析方法和算法。内容主要分为4部分,第1部分为第1章,介绍一些概念,简单描述数据分析方法和一些实例; 第2部分包括第2~7 章,介绍描述性分析和数据预处理的主要方法,包括描述统计、多元描述分析、聚类以及频繁模式挖掘等;第3部分包括第8~12章,介绍预测性分析的主要方法,其中包括多种回归算法、二元回归、分类的性能测量以及基于概率和距离测量的方法,以及决策树、人工神经网络和支持向量机等较为先进的方法; 第4部分为第13章,利用描述和预测这两种方法,简单讨论文本、网页以及社交媒体的应用。
本书旨在向广大有志于投身芯片设计行业的人士及正在从事芯片设计的工程师普及芯片设计知识和工作方法,使其更加了解芯片行业的分工与动向。 本书共分9个章节,从多角度透视芯片设计,特别是数字芯片设计的流程、工具、设计方法、仿真方法等环节。凭借作者多年业内经验,针对IC新人关心的诸多问题,为其提供了提升个人能力,选择职业方向的具体指导。本书第1章是对IC设计行业的整体概述,并解答了IC新人普遍关心的若干问题。第2章和第3章分别对数字IC的设计方法和仿真验证方法进行了详细阐述,力图介绍实用、规范的设计和仿真方法,避免了Verilog语法书中简单的语法堆砌及填鸭式的灌输。第4章是在前两章的基础上,通过实例进一步阐述设计方法中的精髓。第5章详细介绍了作为当今数字芯片主流的SoC芯片架构和设计方法,并对比了非SoC架构的设计,
这本书对GDPR进行了详细的评论,解释了您需要对数据保护和信息安全制度进行的更改,并确切地告诉您需要采取什么措施以避免严重的经济处罚。产品概述EU GDPR ?C实施和合规性指南是此新数据保护法的清晰而全面的指南,解释了该法规,并以您可以理解的术语列出了数据处理者和控制者的义务。任何组织中接触个人数据的的人员都应该掌握相关知识。
内容简介商业分析有用吗?当然有用!商业分析是行走职场、创业启航的一项技能。 作者结合自己多年的工作经验,用生动的语言介绍如何用数据分析解决商业问题。 本书分为6 篇,共17 章,其中第1 篇是概念篇,讲述商业分析的基本概念;第2 篇是基础篇,讲述如何用基础的分析方法评估企业经营状况;第3 篇是进阶篇,讲述如何构建分析体系解决较复杂的问题;第4 篇是高阶篇,讲述如何应对复杂的商业难题;第5 篇是基础实践篇,通过案例讲述如何解决更复杂的商业问题;第6 篇是高阶实践篇,通过案例讲述如何解决商业分析中的疑难杂症。 本书的讲解思路是层层递进的,从简单场景到复杂场景,从基础的方法到复杂的方法。因此,无论读者是否有数据分析基础和经验,都建议从头开始阅读,这样可以一步步提升认知,更快地掌握商业分析的方法。
本书是热销书《SQL基础教程》的作者MICK为志在向中级进阶的数据库工程师编写的一本SQL技能提升指南。全书可分为两大部分。部分介绍了SQL语言不同寻常的使用技巧,带领读者重新认识CASE表达式、窗口函数、自连接、EXISTS谓词、HAVING子句、外连接、行间比较、集合运算、数列处理等SQL常用技术,发掘它们的新用法。这部分不仅穿插讲解了这些技巧背后的逻辑和相关知识,而且辅以丰富的示例程序,旨在帮助读者从面向过程的思维方式转换为面向集合的思维方式。第二部分介绍了关系数据库的发展史,并从集合论和逻辑学的角度讲述了SQL和关系模型的理论基础,旨在帮助读者加深对SQL语言和关系数据库的理解。此外,本书很多节的末尾设置有练习题,并在书末提供了解答,方便读者检验自己对书中知识点的掌握程度。
本书旨在建立和推动“动力学刻画的数据科学”理论和应用研究。全书共六章,内容包括:复杂动力系统理论基础、高维数据的临界预警理论及方法、短时间序列的预测理论及方法、动力学因果检测理论及方法、基于动力学的势能景观构建理论及方法、混沌反馈学习理论及深度学习方法等。全书交叉融合了数学理论、统计学方法、人工智能、计算系统生物学方法等知识,做到数学理论与实际应用并重,动力学算法与统计学方法互补,内容图文并茂、清晰易读、由浅入深,并在第2章至第6章末尾配有相关前沿领域的展望与讨论,读者可以通过阅读本书了解所涉及研究方向的发展趋势。
本书采用 问题描述 解决方案 模式,通过500个案例介绍了使用Pandas进行数据分析和数据处理的技术亮点。全书共分为8章,主要案例包括:读写CSV、Excel、JSON、HTML等格式的数据;根据行标签、列名和行列数字索引筛选和修改数据,使用各种函数根据数据大小、日期范围、正则表达式、lambda表达式、文本类型等多种条件筛选数据;统计NaN(缺失值)的数量、占比,根据规则填充和删除NaN;在DataFrame中增、删、查、改行列数据,计算各种行差、列差、极差以及直接对两个DataFrame进行加、减、乘、除运算和比较差异;将宽表和长表相互转换,创建交叉表和各种透视表;对数据分组结果进行求和、累加、求平均值、求极差、求占比、排序、筛选、重采样等多种形式的分析,将分组数据导出为Excel文件。本书还附赠36个数据可视化案例,如根据指定的条件设置行列数据的颜色和
大模型在众多领域得到了广泛应用,促进了AI技术的整合和创新。然而,在实际应用过程中,直接将大模型应用于特定行业常常难以达到预期效果。本书详细阐述如何在游戏经营分析场景中利用大模型实现数据体系的建设。 本书分为6个部分,共16章。第1部分主要介绍大模型技术的发展与应用,从大模型的发展现状展开,重点介绍大模型与数据体系的相关知识。第2部分主要介绍大模型下的关键基础设施,涵盖湖仓一体引擎、湖仓的关键技术、实时数据写入和高效数据分析等内容。第3部分主要介绍大模型下的数据资产,围绕数据资产重塑、数据资产标准、数据资产建设、数据资产运营展开。第4部分主要介绍自研领域大模型的技术原理,涵盖领域大模型的基础、需求理解算法、需求匹配算法、需求转译算法等内容。第5部分主要介绍大模型的工程化原理,涉及工程化的
本书系统地介绍分数阶微积分学领域的理论知识与数值计算方法。特别地,作者提出并实现一整套高精度的分数阶微积分学的数值计算方法; 提出线性、非线性分数阶微分方程的通用数值解法和基于框图的通用仿真框架; 提出并实现了基于框图的分数阶隐式微分方程、延迟微分方程与分数阶微分方程边值问题的通用求解方法。本书所有知识点均配有高质量的MATLAB 代码与Simulink 模型,有助于读者更好地理解知识点的内涵,更重要的是,读者可以使用这些代码创造性地解决相关问题。 本书可供数学与应用科学领域的高年级本科生、研究生与工程师系统学习分数阶微积分学理论及其计算方法,并用其解决实际应用问题。
本书从ChatGPT的基础原理讲起,逐步深入ChatGPT的基础使用和插件功能,并结合各种数据分析实战案例,重点介绍了ChatGPT在各种数据分析场景中的应用方法,让读者不但可以系统地学习ChatGPT相关知识,而且能对ChatGPT在数据分析中的实战应用有更为深入的理解。本书分为12章,涵盖的主要内容有:ChatGPT简介与基本原理;ChatGPT使用方法;ChatGPT插件应用;ChatGPT构建指标体系、ChatGPT 数据采集与清洗、ChatGPT探索性数据分析和可视化、ChatGPT推断性统计分析、ChatGPT预测分析、ChatGPT文本分析、ChatGPT分类和聚类分析、ChatGPT推荐算法、ChatGPT行业数据分析等的应用方法和实战项目案例。 本书内容通俗易懂、案例丰富、实用性强,特别适合对数据分析和人工智能感兴趣的读者,包括但不限于数据分析师、数据科学家、数据工程师、有数据分析需求的业务人员、研究人员、学生
《像数据达人一样思考和沟通:数据科学、统计学与机器学习》是一本完备的数据科学指南,尤其适用于职场人。本书既包括了职场中应用数据的场景介绍,也包括了算法背后的数学知识。两位作者在数据科学普及领域深耕多年,立志打造一本有趣、贴近生活,且非常具有可读性的数据科学入门书。每个人都能成为数据达人,积极地参与与数据科学、统计、机器学习相关的工作。本书适合作为商务专业人员、工程师、行政人员,以及有志成为数据科学家的研究人员的自学参考读物,也可以作为数据科学相关培训机构的教材。
本书结合了作者多年的数据中心实际工作经验,根据高压运维技术人员上岗的基本要求,围绕数据 中心供配电系统的电力知识和高压系统的操作特点,由浅入深地全面讲述了高压电气设备操作的安全要 求,对高压巡视、操作等项目做了详细的图文解释。全书共分13章,包括安全生产管理、电力系统基 本概念、电力变压器、互感器、高压电气、高压成套配电装置、高压电力线路、过电压保护与接地装置、 继电保护与二次回路、变配电站安全保障、高压开关柜的倒闸操作、变配电站运行管理、高压安全用具等。 本书的编写以理论知识和原理讲解 实用、够用 为原则,以职业岗位的需求和生产实际为主线, 采用理论与实践相结合的教学模式,向读者讲授供配电领域数据中心的新设备和新技术。本书内容深入 浅出、循序渐进,技能训练内容的设计贴近生产实际,力求在
本书系统的阐释Power Pivot for Excel及Power BI中DAX语言的应用。本书是基于笔者多年的DAX学习与使用经验的基础上所采用的一种全新布局与讲解方式,整书依据读者易于理解的方式,由浅入深进行循序渐进式的讲解。本书要探索的重点是,如何利用简捷的办法,让读者在一至两个月之内轻松、系统、全面地掌握DAX语言。 全书共分为5篇:篇为入门篇(第1章和第2章),第二篇为基础篇(第3~5章),第三篇为强化篇(第6章和第7章),第四篇为进阶篇(第8~10章), 第五篇为案例篇(第11章)。书中主要内容包括DAX基础、表的基础应用、查询表、计算列、迭代行、度量值、时间智能、Power BI简介、筛选调节、DAX高阶、综合案例。 本书是为非计算机专业及非统计学专业想快速掌握DAX数据分析及商业智能而准备的。另外,本书也适用于财务、人事行政、电商客服、质量统计等与数
本书基于社会学领域学生和学者的需求,将统计学的理论概念和详细的技术指导有机结合起来,通过众多来自社会学不同领域的有趣示例来呈现丰富的统计方法和模型,鼓励读者在了解理论的同时学习应用Stata软件来实现研究的目的。本书除了用5个章节渐进式地详细阐述线性回归模型之外,还进一步涵盖logistic回归、多层次分析、面板数据分析、探索性因子分析、结构方程模型和验证性因子分析等内容。本书通过配套网站提供各章配套的测试题、视频、数据集和Stata代码,方便读者学习并检查学习效果。 本书可作为社会学领域本科生或研究生定量研究课程的教材或参考书,也可作为想要学习应用Stata软件进行定量研究的社会学者的参考书。
本书结合openGauss数据库原理,讲述openGauss数据库实战相关内容,并设计多种实验帮助用户理 解并使用openGauss数据库。本书首先介绍数据库的基本概念、安装部署、开发调试,并设计实验帮助用 户熟悉这一系列操作。接着介绍数据库设计、查询优化、维护、数据库备份与恢复及导入与导出、存储引 擎、事务控制和数据库安全等。本书理论与实践并重,读者通过阅读本书并进行实践,可以较好地掌握 openGauss数据库。 本书面向的读者主要是高校学生及使用openGauss数据库的工程师。
数字化转型是企业在数字经济时代面对的重大战略选择,其本质是通过有效地使用数据资源对业务进行全面的升级和优化,提高企业的综合产业竞争力。本书将数据科学作为出发点,结合大数据、人工智能技术,以数据分析的方法和理论为观察视角,介绍了企业数字化转型的核心知识概念及主要的应用实践策略。 本书共8章,分为数据科学原理、数据科学技术、数字化业务实践,以及数字化产业目标四个主要部分。 数据科学原理部分(第2章)主要讨论数据要素的核心价值体系及数据科学的基本理论范畴;数据科学技术部分(第3~6章)主要介绍数据获取及预处理方法、数据规律挖掘方法、数据建模方法,以及数据相关技术系统的建设方法;数字化业务实践部分(第7~8章)讨论企业数字化中的实施落地问题、数字化人才和组织架构,以及不同行业数字化应用的典型场
本书是一本全面关注工业企业数据治理方面的工具书,主要内容分为概述篇、体系篇、工具篇、实施篇及案例篇。其中概述篇主要介绍工业企业数据治理的基础概念、主流数据治理标准及框架、数据治理的发展趋势等;体系篇主要介绍数据管控、数据战略、数据架构、主数据管理等的基本原理与管理体系;工具篇主要介绍主数据管理工具、数据模型管理工具、数据资产运营工具等;实施篇主要介绍具体实施策略及路径选择、顶层架构规划与设计、数据资产运营实施等;案例篇主要介绍电力、能源化工、钢铁、制造、战略投资等行业的数据治理案例,为读者提供专业、丰富、可信的数据治理实施范例。本书是工业大数据应用技术国家工程实验室多年潜心研究的重要科研成果的总结和凝聚,既具有理论高度,也具备面向中国工业企业的可实操性。参与本书编著的作者均
本书以数据分析特别是大数据的整理、清洗、分析以及建模为主线,从基础入门到进阶分析再到实践应用,层层递进。主要内容包括软件介绍、数据重整、数据可视化、Stata软件编程基础以及不同场景下的应用。本书的特色在于软件介绍详细全面、结合教学和科研一线实际需求,教材案例内容丰富,理论与实践性较强。本书的读者以高年级本科生、研究生为主,博士生和科研工作者均可作为参考书。本书的读者以高年级本科生、研究生为主,博士生和科研工作者均可作为参考书。
本书英文原版由全球数据中心业内专家共同编写,中文版由国内数据中心业内专家共同翻译并修订完成。内容涵盖了数据中心全生命周期的相关技术及运营管理策略。从数据中心规划、选址、设计、建设、测试、验收、运营到灾备,内容全面详实。是作者及译者多年经验所得。是一本来自全球不同国家、不同企业、不同专业领域的专家共同完成的杰作。 本书可作为数据中心设计者、建设者、管理者以及投资者的学习及参考材料,亦可作为高校相关专业学生及其他人士了解数据中心行业的入门材料。