微软创始人比尔?盖茨曾经称雷?库兹韦尔是“我知道在预测人工智能上最厉害的人”。过去30年他对未来预测的准确率超过了86%。在这本书中,雷?库兹韦尔阐述了极其令人信服的大胆预测:未来的世界,人类和机器将难分彼此,人类将不再是万物之灵。电脑将比人脑有高一万倍的智能。量子计算将引爆技术未来。机器不仅拥有智能,而且拥有心灵,将具有人类的意识、情绪和欲望。人类身体中植入了用生物工程和纳米材料制成的电脑芯片、人造器官,将比现代人类更长寿(甚至长生不老),有更强的学习能力,更灵敏的视觉和听觉。虚拟现实有可能使人机发生“恋爱”……你会认为这不可能?当人类不再继续生活在树上,并且吃烤熟了的东西的时候,有某个猴子也是和你一样看待人类进化的。
如何估计机器人在空间中移动时的状态(如位置、方向)是机器人研究中一个重要的问题。大多数机器人、自动驾驶汽车都需要导航信息。导航的数据来自于相机、激光测距仪等各种传感器,而它们往往受噪声影响,这给状态估计带来了挑战。本书将介绍常用的传感器模型,以及如何在现买世界中利用传感器数据对旋转或其他状态变量进行估计。本书涵盖了经典的状态估计方法(如卡尔曼滤波)以及为现代的方法(如批量估计、贝叶斯滤波、sigmapoint滤波和粒子滤波、剔除外点的鲁棒估计、连续时间的轨迹估计和高斯过程回归)。这些方法在诸如点云对齐、位姿图松弛、光束平差法以及同时定位与地图构建等重要应用中得以验证。对机器人领域的学生和相关从业者来说,本书将是一份宝贵的资料。
本书从TensorFlow基础讲起,逐步深入TensorFlow进阶实战,配合项目实战案例,重点介绍了实用TensorFlow库训练卷积神经网络模型并将模型移植到服务器端、Android端和iOS端的知识。读者不但可以地学习TensorFlow库的使用,还能加深对深度卷积神经网络的理解。本书分为4篇,共13章,涵盖的主要内容有人工智能发展历程,TensorFlow基础入门,高维Tensor对象的工具函数,前馈网络,常见网络,TensorFlow数据存取,TensorFlow数据预处理,TensorFlow模型训练,TensorBoard可视化工具,中文手写字识别,移植模型到TensorFlowServing端,移植TensorFlow模型到Android端,移植TensorFlow模型到iOS端。
这是一本场景式的机器学习实践书,笔者努力做到“授人以渔,而非授人以鱼”。理论方面从人工智能(AI)与机器学习(ML)的基本要素讲起,逐步展开有监督学习、无监督学习、强化学习这类模型的应用场景与算法原理;实践方面通过金融预测、医疗诊断概率模型、月球登陆器、图像识别、写诗机器人、中国象棋博弈等案例启发读者将机器学习应用在各行各业里,其中后三个案例使用了深度学习技术。本书试图用通俗的语言讲解涵盖算法模型的机器学习,主要内容包括机器学习通用概念、三个基本科学计算工具、有监督学习、聚类模型、降维模型、隐马尔可夫模型、贝叶斯网络、自然语言处理、深度学习、强化学习、模型迁移等。在深入浅出地解析模型与算法之后,介绍使用Python相关工具进行开发的方法、解析经典案例,使读者做到“能理解、能设计、能编码、
多智能体协调控制是机器人和人工智能领域的研究热点。本书主要涉及多机器人(多智能体)的协调控制问题,提出了一种交互式协作智能体语言ALICA(交互式协作智能体语言),详细描述了ALICA的语法、语义、冲突检测与消解、软件架构、约束问题求解等内容。,通过三种场景,即机器人足球、探索和搜救来评估验证所提方法的有效性。本书可作为多机器人协调控制、人工智能和计算机科学领域的研究人员的参考书,也可作为高等院校相关研究生以及教师的参考用书。