本书是《动手学深度学习》的重磅升级版本,选用经典的PyTorch深度学习框架,旨在向读者交付更为便捷的有关深度学习的交互式学习体验。 本书重新修订《动手学深度学习》的所有内容,并针对技术的发展,新增注意力机制、预训练等内容。本书包含15章,部分介绍深度学习的基础知识和预备知识,并由线性模型引出简单的神经网络 多层感知机;第二部分阐述深度学习计算的关键组件、卷积神经网络、循环神经网络、注意力机制等大多数现代深度学习应用背后的基本工具;第三部分讨论深度学习中常用的优化算法和影响深度学习计算性能的重要因素,并分别列举深度学习在计算机视觉和自然语言处理中的重要应用。 本书同时覆盖深度学习的方法和实践,主要面向在校大学生、技术人员和研究人员。阅读本书需要读者了解基本的Python编程知识及预备知识中描
内容简介对于我们每个普通人而言,核心的AI能力不是写作不是绘画,也不是编码,而是AI Agent设计!这是一本能帮助每个人轻松构建从提示词编写到AI Agent设计完整知识体系的实战指南,由LangGPT社区的的创始人等几位国内提示词编写和AI Agent设计领域的领军人物撰写,得到了硅基流动创始人袁进辉、润米咨询创始人刘润、通往AGI之路创始人AJ等众多行业专家的高度评价。设计AI Agent,提示词是关键。本书首先详细介绍了提示词的原理、编写提示词常用的6种方法,以及被奉为圭臬的结构化提示词方法论,旨在为读者深入使用各类AI助手和设计AI Agent打下坚实基础。然后系统讲解了AI Agent的工作原理、主流平台、设计模式、设计方法和流程,配有大量案例和最佳实践。本书具有以下特色: 零基础入门:不需要编程经验,人人都能看懂的AI智能体设计指南。 实用案例丰富:
本书全面、深入地探讨了人工智能(AI)领域的理论和实践,以统一的风格将当今流行的人工智能思想和术语融合到引起广泛关注的应用中,真正做到理论和实践相结合。全书分7个部分,共28章,理论部分介绍了人工智能研究的主要理论和方法并追溯了两千多年前的相关思想,内容主要包括逻辑、概率和连续数学,感知、推理、学习和行动,公平、信任、社会公益和安全;实践部分完美地践行了 现代 理念,实际应用选择当下热度较高的微电子设备、机器人行星探测器、拥有几十亿用户的在线服务、AlphaZero、人形机器人、自动驾驶、人工智能辅助医疗等。本书适合作为高等院校人工智能相关专业本科生和研究生的教材,也可以作为相关领域专业人员的参考书。
深度学习和大模型技术在推荐系统领域掀起了一场技术革命,本书从深度学习推荐模型、Embedding技术、大模型、AIGC、模型工程实现、业界前沿实践等几个方面介绍了这场技术革命中的主流技术要点。 本书既适合推荐系统、计算广告和搜索领域的从业者阅读,也适合人工智能相关专业的本科生、研究生、博士生阅读,帮助建立深度学习推荐系统的技术框架,通过学习前沿案例,加强深度学习理论与推荐系统工程实践的融合能力。
《深度学习》由全球知名的三位专家Ian Goodfellow、Yoshua Bengio 和Aaron Courville撰写,是深度学习领域奠基性的经典教材。全书的内容包括3个部分:第1部分介绍基本的数学工具和机器学习的概念,它们是深度学习的预备知识;第2部分系统深入地讲解现今已成熟的深度学习方法和技术;第3部分讨论某些具有前瞻性的方向和想法,它们被公认为是深度学习未来的研究重点。 《深度学习》适合各类读者阅读,包括相关专业的大学生或研究生,以及不具有机器学习或统计背景、但是想要快速补充深度学习知识,以便在实际产品或平台中应用的软件工程师。
本书是一本有思维方法论启示的书;是一本站在历史的高度, 正面思考科技力量的书;是一本充满想象与预言,但又不失科学论证的书。本书提供了一个崭新的视角:21世纪既是数百年以来科技、创意的顶点,又是对人类终极命运真挚的愿景。 本书特点:奇特与警示的结论,书中六个纪元的划分奇特又富于哲理;严谨与独特的论述方法,通过分析科学发展趋势,演绎并预测未来;警世之语与探讨性对话,通过智者的眼睛去审视自然、科学以及世界;章尾与未来的对话,是一种思想的博弈:通过设想中的未来去理解当今的技术发展和进化中的人类。 本书论述严谨,案例丰富,深入阐释了 奇点 作为一种思潮,其在世界范围内所产生的广泛影响,并介绍了其在哲学、科学、技术、艺术等各个方面所展示的独特魅力。
内容简介这是一本人人都能读懂的大模型综合指南,既是一本大模型的科普书,又是一本大模型的商业书。由中国电信研究院天翼智库官方出版,从核心技术、基础设施、商业应用、产业体系、安全治理5个维度全面讲解了大模型。语言上通俗易懂,内容上深入浅出,呈现上图文并茂,给读者良好阅读体验的同时,让读者对大模型的理解事半功倍!无论你是AI工程师,还是完全没有IT技术背景的爱好者;无论你是一线的从业人员,还是企业的管理者和决策者,你都能通过本书系统理解和掌握大模型,从而深刻认识大模型的核心价值和应用潜力,把握住大模型带来的变革和商机。通过阅读本书,我们每个人都能从中收获以下知识:(1)AI的本质和AI发展的4个阶段;(2)大模型的核心技术和大模型的技术进化路线;(3)大模型的算力基础设施和数据基础设施;(4)基座
AI已成为职场的入场券,你准备好了吗? 这是一本面向所有职场人的AI助手使用指南,它以流行的豆包为工具,从实战的角度讲解了如何借助AI大幅提升工作效率和激发创新能力。本书凝聚了LangGPT社区核心AI专家的丰富实战经验和方法论,得到了豆包官方字节跳动旗下的火山引擎开发者社区,以及秋叶等多位办公和AI领域专家的高度认可。 工欲善其事,必先利其器。本书首先从一个行家的视角全面介绍了豆包、豆包内置应用、豆包浏览器插件的功能和使用方法,为读者打下AI基础;然后,详细讲解了LangGPT社区自创的提示词编写原则、思维方法,以及7种好用的结构化提示词框架,为你构建好通往AI世界的桥梁。 授人以渔,本书针对文本创作、绘图、数据处理、信息收集与获取、撰写会议材料、做计划、写总结、文献阅读、论文写作、公文写作、项目管理、爆款文案写
《高效使用Deepseek:探索AI时代的未至之境》是一本关于如何高效使用DeepSeek智能助手的实用指南。书中详细介绍了DeepSeek的各项功能和使用技巧,内容涵盖了从基础的操作教程到高级的办公自动化、知识管理、智能助手应用等方面,帮助读者深入理解和掌握这一AI工具。本书的目的不仅是向用户展示DeepSeek的功能,更重要的是教会他们如何将其应用到实际的生活和工作中,从而提升工作效率和学习能力。 《DeepSeek使用指南:全场景职业应用实践》全面介绍了DeepSeek这一AI工具在多个职业场景中的应用方法和技巧,重点帮助读者在实际工作中提升生产力和创造力。书中通过深入浅出的方式,介绍了如何使用DeepSeek进行文本创作、数据分析、决策支持等工作,内容包括从基础指令到复杂任务拆解,再到行业专用的场景应用,具有很高的实用性和操作性。 《DeepSeek使用指南
本书前半部分介绍强化学习的重要思想和基础知识,后半部分介绍如何将深度学习应用于强化学习,遴选讲解了深度强化学习的最新技术。全书从最适合入门的多臂老虎机问题切入,依次介绍了定义一般强化学习问题的马尔可夫决策过程、用于寻找最佳答案的贝尔曼方程,以及解决贝尔曼方程的动态规划法、蒙特卡洛方法和TD方法。随后,神经网络和Q学习、DQN、策略梯度法等几章则分别讨论了深度学习在强化学习领域的应用。本书延续 鱼书 系列的风格,搭配丰富的图、表、代码示例,加上轻松、简明的讲解,让人循序渐进地理解强化学习中各种方法之间的关系,于不知不觉中登堂入室。
《神经网络与深度学习:案例与实践》是《神经网络与深度学习》(蒲公英书)的配套实践书,由复旦大学邱锡鹏教授和百度飞桨团队合作完成。本书在章节设计上和《神经网络与深度学习》一一对应,并以模型解读+案例实践的形式进行介绍。模型解读主要聚焦如何从零开始一步步实现深度学习中的各种模型和算法,并结合简单的任务来加深读者对模型和算法的理解;案例实践主要强调如何使用飞桨预定义API来更好地完成实际任务,会涉及一些数据预处理问题。建议读者将本书和《神经网络与深度学习》结合阅读,在动手实践中更深入地理解深度学习的模型和原理。
《深度学习》内容介绍:《深度学习》由全球知名的三位专家Ian Goodfellow、Yoshua Bengio 和Aaron Courville撰写,是深度学习领域奠基性的经典教材。全书的内容包括3个部分:第 1部分介绍基本的数学工具和机器学习的概念,它们是深度学习的预备知识;第 2部分系统深入地讲解现今已成熟的深度学习方法和技术;第3部分讨论某些具有前瞻性的方向和想法,它们被公认为是深度学习未来的研究重点。 《深度学习》适合各类读者阅读,包括相关专业的大学生或研究生,以及不具有机器学习或统计背景、但是想要快速补充深度学习知识,以便在实际产品或平台中应用的软件工程师。 《动手学深度学习》内容简介:本书旨在向读者交付有关深度学习的交互式学习体验。书中不仅阐述深度学习的算法原理,还演示它们的实现和运行。与传统图书不同,本书的每一节都是一个可以
9787115630940 做好课题申报:AI辅助申请书写作 69.80 9787115632784 高效写论文:AI辅助学术论文写作 69.80 《做好课题申报:AI辅助申请书写作》 申报课题是高校教师和科研工作者十分重要的工作内容。 本书采用倒金字塔思路,对课题申请书进行了拆解,并系统介绍了如何利用 AI 辅助做好课题申报工作。本书第一章对课题申报进行了概述,分别介绍了各级别课题的申报公告和申请书及活页。第二章~第十二章分别介绍如何利用 AI 辅助开展课题申报的具体工作,主要有寻找选题、分析课题立项选题,以及课题论证相关部分的写作,包括研究背景写作、学术史梳理及研究动态写作、研究价值写作、阐释研究对象与框架思路写作、课题的重点难点写作、主要目标写作、研究计划及其可行性写作、其他部分写作。本书讲解全面、细致,并采用案例直观展示,方便读者学习。 《高
AI已成为职场的入场券,你准备好了吗? 这是一本面向所有职场人的AI助手使用指南,它以流行的Kimi为工具,从实战的角度讲解了如何借助AI 大幅提升工作效率和激发创新能力。本书凝聚了LangGPT社区核心AI专家的丰富实战经验和方法论,得到了Kimi官方、LangGPT社区和多位AI领域专家的高度认可。 工欲善其事,必先利其器。本书首先从一个行家的视角全面揭示了Kimi、Kimi (Kimi内置的智能体)和Kimi浏览器插件的功能和使用,带你认识不一样的Kimi;然后,奉上了LangGPT社区自创的提示词编写原则、思维方法,以及7种好用的结构化提示词框架,帮你掌握使用任何AI的核心能力。 授人以渔,本书针对文本创作、PPT制作、数据处理、信息收集与获取、撰写会议材料、做计划、写总结、文献阅读、论文写作、公文写作、项目管理、爆款文案写作等12个职场高频场景,以及品牌、公
本书通过Python示例介绍人工智能技术在金融数据分析中的应用。你将了解如何运用神经网络、强化学习等深度学习技术预测金融市场。本书分为六大部分。部分介绍人工智能算法的核心概念,包括监督学习和神经网络,并描绘超级人工智能愿景。第二部分讨论机器学习技术在金融市场中的应用。第三部分更进一步,讨论如何利用神经网络和强化学习技术解决金融市场中的统计失效问题。第四部分详述如何利用算法交易解决统计失效问题。第五部分展望未来,探讨人工智能会如何改变金融业。第六部分给出以Python实现的神经网络,可用于时间序列预测。
本书基于备受读者推崇的王树森 深度强化学习 系列公开视频课,专门解决 入门深度强化学习难 的问题。 本书的独特之处在于:,知识精简,剔除一切不必要的概念和公式,学起来轻松;第二,内容新颖,聚焦近10年深度强化学习领域的突破,让你一上手就紧跟技术。本书系统讲解深度强化学习的原理与实现,但不回避数学公式和各种模型,原创100多幅精美插图,并以全彩印刷展示。简洁清晰的语言 生动形象的图示,助你扫除任何可能的学习障碍!本书内容分为五部分:基础知识、价值学习、策略学习、多智能体强化学习、应用与展望,涉及DQN、A3C、TRPO、DDPG、AlphaGo等。 本书面向深度强化学习入门读者,助你构建完整的知识体系。学完本书,你能够轻松看懂深度强化学习的实现代码、读懂该领域的论文、听懂学术报告,具备进一步自学和深挖的能力。
内容简介这是一本全面讲解RAG技术原理、实战应用与系统构建的著作。作者结合自身丰富的实战经验,详细阐述了RAG的基础原理、核心组件、优缺点以及使用场景,同时探讨了RAG在大模型应用开发中的变革与潜力。书中不仅揭示了RAG技术背后的数学原理,还通过丰富的案例与代码实现,引导读者从理论走向实践,轻松掌握RAG系统的构建与优化。无论你是深度学习初学者,还是希望提升RAG应用技能的开发者,本书都将为你提供宝贵的参考与指导。通过阅读本书,你将掌握以下知识:?透彻理解RAG的召回和生成模块算法?高级RAG系统的技巧?RAG系统的各种训练方式方法?深入了解RAG的范式变迁?实战0基础搭建RAG系统?实战高级RAG系统微调与流程搭建
本书详尽地覆盖了多模态大模型的算法原理和应用实战,提供了丰富的微调技术细节和实际案例,适合对多模态大模型有兴趣的技术人员深入学习及应用。 本书分为两篇: 算法原理篇 详细介绍了先进的深度学习模型,包括Transformer、GPT系列、深度生成模型,从基本架构、训练方法到特定应用,包括但不限于Seq2Seq结构、位置编码、注意力机制、残差连接、变分自编码器、GAN、ViT、CLIP、Stable Diffusion、各模型训练实践的知识点。此外,探讨了预训练模型的涌现能力、模型参数和通信数据量的估算,以及分布式训练的各种技术,如数据并行、模型并行和混合精度训练等。 应用实战篇 聚焦于深度学习模型的实际应用,特别是文本和图像生成,以及代码生成的应用实战。通过具体实战项目,如利用Stable Diffusion进行图像生成和Code Llama进行代码生成,提供了微调技术的详细细
深度学习框架中蕴藏着惊人的技术和有趣的机制,本书旨在揭开这些技术和机制的神秘面纱,帮助读者正确理解技术,体会它们的有趣之处。为此,本书会带领读者从零开始创建一个深度学习框架 DeZero。DeZero 是本书原创的框架,它用少的代码实现了现代深度学习框架的功能。本书分60 个步骤来完成这个框架,在此过程中,读者会加深对PyTorch、TensorFlow 和Chainer 等现代深度学习框架的理解,看清深度学习框架的本质。 本书沿袭《深度学习入门:基于Python 的理论与实现》的风格,语言通俗,代码简洁,讲解详细。在自制框架的过程中,读者还能进一步巩固Python 编程和软件开发相关的知识。 本书适合对深度学习框架感兴趣的读者阅读。
人工智能时代,数字数据的爆炸式增长推动了人们对使用机器学习(ML)的交易策略相关知识的需求。《机器学习在算法交易中的应用(第2版)》就以Python为基本工具,从全局、战略的视角介绍了相关的概念,以及机器学习在交易策略设计和执行中的价值及实践运用。全书分4部分,其中第1部分主要介绍基于机器学习的交易策略的基础知识,该部分内容围绕机器学习算法以及交易策略相关的数据展开,概述了如何有效捕获数据信号内容、如何准确提取特征,以及如何基于这些数据优化算法评估投资组合。第2部分重点阐述了在端到端工作流环境中,一些基本的监督学习、无监督学习是如何为交易策略的制定提供帮助的。第3部分是自然语言处理,这部分引入了无监督学习算法,力求从文本数据这种关键的另类数据中高质量地提取信号。第4部分通过TensorFlow和PyTorch,重点介绍深
虽然很多深度学习工具都使用Python,但PyTorch 库是真正具备Python 风格的。对于任何了解NumPy 和scikit-learn 等工具的人来说,上手PyTorch 轻而易举。PyTorch 在不牺牲高级特性的情况下简化了深度学习,它非常适合构建快速模型,并且可以平稳地从个人应用扩展到企业级应用。由于像苹果、Facebook和摩根大通这样的公司都使用PyTorch,所以当你掌握了PyTorth,就会拥有更多的职业选择。 本书是教你使用 PyTorch 创建神经网络和深度学习系统的实用指南。它帮助读者快速从零开始构建一个真实示例:肿瘤图像分类器。在此过程中,它涵盖了整个深度学习管道的关键实践,包括 PyTorch张量 API、用 Python 加载数据、监控训练以及将结果进行可视化展示。 本书主要内容: (1)训练深层神经网络; (2)实现模块和损失函数; (3)使用 PyTorch Hub 预先训练的模型; (4)探索在 Jupyt