本书这本经久不衰的畅销书出自一位著名数学家G 波利亚的手笔,虽然它讨论的是数学中发现和发明的方法和规律,但是对在其他任何领域中怎样进行正确思维都有明显的指导作用。本书围绕 探索法 这一主题,采用明晰动人的散文笔法,阐述了求得一个证明或解出一个未知数的数学方法怎样可以有助于解决任何 推理 性问题 从建造一座桥到猜出一个字谜。一代又一代的读者尝到了本书的甜头,他们在本书的指导下,学会了怎样摒弃不相干的东西,直捣问题的心脏。
《有机化学反应机理解析》全书共分为十三章,主要内容包括:有机化合物的结构概述(*章),烷烃(第二章),烯烃(第三章),炔烃、多烯烃(第四章),单环芳烃(第五章),卤代烃(第六章),醇、酚、醚(第七章),醛、酮(第八章),羧酸及衍生物(第九章),含氮化合物(第十章),缩合反应(第十一章),重排反应(第十二章),在系统讲述各类有机反应机理之后,生动形象地对有机化学反应机理进行归一(第十三章),揭示有机化学反应机理的真谛。《有机化学反应机理解析》可作为高中生奥林匹克化学竞赛的参考指导书,也可供高等院校本科生学习有机化学时参考使用,还可作为中学化学教师的培训进修教材。
本书系《中国古代天文知识》丛书之一。本书是关于中国古代天文学二十八宿的本专门的科普著作,立足于文献资料,深入浅出地对二十八宿的含义、来源及在中国文化中的意义和作用进行了诠释,通过介绍历史上著名的有关二十八星宿的故事,说明其对中国古代社会生活的影响。全书学术创新与通俗易懂相结合,视角新颖,深入浅出。
从数学的角度来看,世界是由微分和积分构成的。因此,学习微积分就是我们主动了解我们生活的世界的一种方式。微积分在数学中占据着重要的地位,是一个充满数学魅力和乐趣的领域。 然而,微积分的理论性非常强,学习难度大,是最容易挫伤学生学习数学积极性的部分之一。为了最大限度地发挥学生的主观能动性,在最短的时间内抓住并阐明本质,本书以师生对话的方式,配以简单的图片,用浅显易懂的文字说明了微积分的基本原理。 本书共包括四个部分,分别是:课前准备、60分钟揭开微积分神秘面纱的四大步骤、所谓 微分 是指什么?、所谓 积分 是指什么?。 本书通过日常生活中的常见事例说明了微积分的基本原理、公式推导过程及实际应用意义。本书讲解循序渐进,生动亲切,没有烦琐复杂的计算过程,是一本写给不擅长数学的成年人的学习微积
本书系《中国古代天文知识》丛书之一。中国是世界上产生天文学早的国家之一,也是早有历法的国家之一。在早期新石器时代的母系氏族社会时期,人们已经能够利用星体的位置辨别方向,判断时间,识别季节,因而积累了丰富的天文知识。全书用优美生动的文字、简明通俗的语言、图文并茂的形式,把中国文化中的天文历法知识知识简明扼要地传达给读者,以翔实客观的资料说明了古代天文历法是中华传统文化核心,它的影响一直延续到现代,可谓源远流长,在世界上是独一无二的。
本书系《中国古代天文知识丛书》之一。中国古代天文学家将星空划为三垣二十八宿共三十一个天区,对每一个天区的星座、星名及其功能都做了安排,但对今人而言,这些星座、星名显得佶屈聱牙,它们的功能更是难以理解。本书作者积数十年研究,以齐全的资料、缜密的思考,以十二月昏中星为线索,对全天肉眼能见的主要星座的位置、大小、形状及其功能做了系统介绍。本书是学界揭示中国星座文化内涵的部著作,含有独到的见解和深厚的学术底蕴,书中还结合星名引用了近百个神话故事,佐以几十幅插图,对中国古代星空、星名的含义和来历做了详细的分析,内容丰富,图文并茂,生动有趣,是一部帮助读者认识中国古代星空的很好的入门书,也能给天文学史研究者、历史研究者提供新的视角。
文章从数字与数字类型讲起,介绍数字、数学运用的历史、趣味故事,数学在国际象棋、文学电影、艺术等方面的应用等,用生动活泼的语言向读者介绍生活中数学的运用,激发读者学习数学的兴趣,鼓励大家继续探索生活中的数学。
《数学随笔》是作者近年来在微信中发表的一些数学随笔,每次一篇,涵盖了代数、几何、数论、组合、分析等方面的知识。日积月累,集成此书。对热爱解题,希望提高解题技巧的读者极有实用意义。通过研读此书,不仅可以掌握数学解题的方法,还可以提高数学解题的能力。 《数学随笔》适合初、高中师生阅读,亦可供数学爱好者参考。
本元素周期表以彩色图片的形式展示,A面为元素性质表格,主要是原子量、电子构型、摩尔体积、原子半径、电离能、晶体结构、电负性、电子亲合能等数据。B面以彩色插图形式表示本元素代表性的应用或性质,并配以文字简单介绍。另附一小册子介绍各元素的性质和代表性反应等,以满足读者在不同环境中的需求。
在中国古代科学技术的发展中,算学发展一直伴随着科技的发展,并且在解决技术与工程发展中的问题发挥出色。本书以图文并茂的形式为少年朋友揭开中国古代数学的神秘面纱。在这里,您将了解从 记数 到 算术 的发展过程,了解被称为 中国数制 的十进位值制记数法,了解古人计算面积和体积所使用的方法,了解《九章算术》《孙子算经》等重要典籍,了解神秘的 河图 与 洛书 、华容道、鲁班锁等经久不衰的古代益智游戏,领略中国古代数学的魅力。
《不等式的秘密(卷第2版)》部分(1 8章)的内容主要介绍了常用的不等式,如AM GM不等式、Cauchy-Schwarz不等式、Holder不等式等,并给出了这些不等式新颖、有趣的证明。通过大量的例子介绍了初等不等式的证明方法和技巧,如Cauchy求反技术、Chebyshev关联技术、平衡系数法、凸函数法和导数等方法。1部分(第9章)是作者收集了近百个不等式的典型问题,内容丰富、解答新颖,富有启发性。 本书适合高中以上文化程度的学生、教师、不等式爱好者参考使用,是一本数学奥林匹克有价值的参考资料。
平面几何是一门具有特殊魅力的学科,主要是训练人的理性思维的.《平面几何天天练(中卷·基础篇)(涉及圆)》以天天练为题,在每天的练习中,突出重点,使学生在练习中学会并吃透平面几何知识。 《平面几何天天练(中卷·基础篇)(涉及圆)》适合初、高中师生学习参考,以及专业人员研究、使用和收藏。
2000年,美国马萨诸塞州剑桥的克莱基金会发起了一场颇具历史意义的竞赛: 任何能够解决七大数学难题之一的人,在专家认定其解答正确之后,都可以获得100万美元的奖金。对这七大问题的解答(或者解答不出)将对21世纪的数学研究产生巨大的影响。这些问题涉及纯粹数学和应用数学中大多数*迷人的领域: 从拓扑学和数论到粒子物理学、密码学、计算理论甚至飞机设计。著名的数学阐释者德夫林在本书中向我们讲了这七大难题的内容、由来以及它们对数学和科学的意义。
数论是研究数的性质的一门学科。《数论经典著作系列:初等数论(3)》从科学实验的实际经验出发,分析了数论的发生、发展和应用,介绍了数论的初等方法。本书为《初等数论(2)》的后续,介绍了自然数的一些有趣的性质、数论中常见的数、平方剩余及其计算方法等数学方法。每章后有习题,并在书末附有全部习题解答。本书写得深入浅出,通俗易懂,可供广大青年及科技人员阅读。
在这本简约流畅而又意味丰厚的通识读物里,生态学大家查尔斯 J.克雷布斯教授提醒我们,生态学思维是生态文明来临前每个公民应该具备的基本素养。出于 普及生态学思维 的美好意愿,他抛弃了那种囊括生态学的经典研究或主要理论流派的 专业黑话 ,引领我们关注诸如物种入侵、气候变迁、过度捕捞、物种灭绝、生物多样性保护之类的生态现象以及相关生态故事,进而一步步地推导出生态学中的12个关键原则:物种有其地理分布;种群不可能无限增长;每个物种都存在适宜与不适宜的栖息地;被过度开发的种群必然会崩溃;动植物种群能从干扰中恢复;群落能存在于不同的稳定状态中;关键物种对生物群落的运转至关重要;自然系统是演化的产物;自然系统会循环利用重要物质;太阳能驱动了大自然的生态系统;气候变化实质性地影响了生态系统的变化;灭绝
这是《不等式的秘密》一书的第二卷,取名为《不等式的秘密(第2卷高级不等式)》。在本卷你可以看到五种方法,这些方法不仅能提升解决不等式的能力,而且还可以减少问题的复杂性并给出漂亮的证明。 在此,你可以找到证明不等式的现代方法:整合变量法、乎方分析法、反证法、归纳法和经典不等式的使用方法。正如你阅读过的本书卷一样,这里有许多漂亮和困难的问题训练你使用这些方法的技能。 我们希望,作者范建熊倾注在本书关于不等式方面的热情和汗水对你有用。
《从一元一次方程到伽罗瓦理论》从 解三次和四次多项式方程的故事 、 向五次方程进军 、 一些数学基础 、 扩域理论 、 尺规作图问题 、 两类重要的群与一类重要的扩域 、 伽罗瓦理论 及 伽罗瓦理论的应用 八个方面逐步展开。按历史发展,从解一元一次方程讲起,详述了一元二次方程、一元三次方程,以及一元四次方程的各种解法,从而自然地引出了群、域,以及域的扩张等概念。在讨论了集合论后,又用近代方法详细阐明了对称群、可迁群、可解群、有限扩域、代数扩域、正规扩域以及伽罗瓦理论等,引导读者一步步地去解决一系列重大的古典难题,如尺规作图问题、三次实系数不可约方程的 不可简化情况 ,以及伽罗瓦的根式可解判别定理等。 《从一元一次方程到伽罗瓦理论》可供高中学生、理工科大学生、大中学校数学教师,以及广大的爱好研读数学
《海陆的起源》是大陆漂移说创始人阿尔弗雷德 魏格纳的经典论著,系统地阐述并论证了他在1912年提出的大陆漂移说。全书共分三个部分。*部分论述大陆漂移的基本内容,并把它同地球冷缩说、陆桥说和大洋永存说进行对比,指出了这些学说的缺点和问题,认为只有大陆漂移说才能解释全部事实。第二部分从地球物理学、地质学、古生物学、古气候学、大地测量学等方面论证大陆漂移说的合理性。第三部分为解释和结论,从地球的黏性、大洋底、硅铝圈、褶皱与断裂、大陆边缘的构造形态等方面,讨论了大陆漂移的可能性以及漂移的动力。此书一问世,即被译成多种文字出版,引起全世界地质学界、地球物理学界的重视。