2000年,美国马萨诸塞州剑桥的克莱基金会发起了一场颇具历史意义的竞赛: 任何能够解决七大数学难题之一的人,在专家认定其解答正确之后,都可以获得100万美元的奖金。对这七大问题的解答(或者解答不出)将对21世纪的数学研究产生巨大的影响。这些问题涉及纯粹数学和应用数学中大多数*迷人的领域: 从拓扑学和数论到粒子物理学、密码学、计算理论甚至飞机设计。著名的数学阐释者德夫林在本书中向我们讲了这七大难题的内容、由来以及它们对数学和科学的意义。
《数学概念的演变》是一本由一位杰出的数学家所著的杰作,它提供了一个独特的视角来看待数学的发展和演变。与研究数学的历史或哲学不同,怀尔德把数学视为一种广泛的文化现象。他的研究揭示了数和长度等概念是如何受到历史和社会实践的影响的。从初步的概念开始,本研究探讨了数的早期演变、几何的演变以及实数中对无穷的征服。对演变的过程进行了详细的考察,并以对现代的演变的研究结束。 《作为文化体系的数学》不能被看成是一部纯粹研究数学历史的著作。数与几何的发展基本上体现了高等数学发展的所有特点。作者通过数与几何概念的演变,深刻地揭示数学作为一种文化现象,它的发展同时受到历史和社会实践的影响。作者首次引入人类学的方法而非专业数学的方法来研究数学的发生、发展和变化过程,得出了一些十分重要的结论,为理解
本书由131个 无需语言的证明 的图片组成,每一个都非常精彩。当从一个图片中悟出为何该图片证明了相应的数学结论时,读者便能够体会到数学绝妙的美,所以这本书叫做数学写真集。书中的素材选取自国际数学杂志中一流数学家发表的文章。
库尔特 哥德尔是一个智慧巨人。他的不完全性定理不仅改变了数学,而且改变了整个科学世界和建筑于此定理之上的哲学。哥德尔定理粉碎了逻辑最终将使我们理解整个世界的梦想,同时也引发了许多富有挑战性的问题:什么是理性思维的界限?我们能够完全理解我们自己造的机器吗?我们能够搞清楚我们心智的内在工作过程吗?当研究结果缺乏逻辑的确定性时,数学家还怎么继续工作?在这本书里,我们最终遇到了置身于这些深邃思想背后的那个人。约翰 L.卡斯蒂和维尔纳 德波利为我们描述了一个复杂的人物:既入世又遁世,既雄心勃勃又固执己见。 正像卡斯蒂和德波利所明断的那样,哥德尔的影响是持久不衰的。他的工作不仅使数学发生革命性的变化,而且波及哲学、语言学和计算机科学,甚至还包括宇宙学。
《1 1不总等于2》是一门令人惊叹的数学课! 1 1=2,这可太简单了,谁不会啊! 那么,一个苹果加一个梨等于多少呢?是两个什么? 数学在物理学、工程学、天文学方面都有着举足轻重的地位,万物逻辑始于1 1,宇宙的尽头是1 1。搞懂数学的底层逻辑,你会发现,数学和物理原来是这么回事! 原始人类能否理解 1 1=2 这个我们现在看来如此简单的算式呢? 薛定谔的猫 在二进制里有着怎样的解释? 数学到底是一种发现还是一种发明?
《作为文化体系的数学》站在文化人类学的立场,描述了数学的性质以及数学与社会的联系。认为数学是一般文化的子文化,它的现状和发展受到文化的影响。把文化系统的各个成分当成一种向量,这在文化人类学当中是一种创新, 有助于更加清晰地分析和理解支配数学学科发展的力量。在关于数学的人类学方面,怀尔德一共写了两部著作,*部著作是《数学概念的演变》,本书是第二部。《作为文化体系的数学》是对《数学概念的演变》所涉及内容的进一步精致处理,作者明确提出数学是一个文化体系,他充分借助数学史研究的已有成果,同时又运用文化学的视角和方法审视一些重要的数学历史现象, 获得了一些十分重要的结论。把数学视为一个文化体系,不仅有助于理解现代人文数学哲学观,而且能较好地解释至今为止哲学或心理学无法解释的数学历史现象。
首先,本书从 r期状态随机概率转换矩阵 的数据,得到了 单期状态随机概率转换矩阵 的分析解,从而解决了由于时间跨度r存在而不能使用传统模型方法的问题。其次,本书对二维随机概率转换矩阵的开方进行了详细的分析,得到了矩阵开方可能存在 *性 和 存在性 的很多细节结果。*后,通过对间接估计量和直接估计量的比较,从理论推导和数值模拟两个角度得到了与一般直觉不一致的结论。
癌症、疑难慢性病如何治疗和康复?本书作者通过自身的经历,对治疗“ 症”提出了一些新思路、新理念和新方法。倡导文化的医学功能,是本书的主题,也是作者三十余年与癌症和平共处的经验总结。文化的力量,比我们想象的强大。
大数据时代,人们在生产生活中收集了大量的高维复杂数据。在针对这些数据进行统计分析的过程中,构建一个简单高效的模型至关重要。一个简单的稀疏模型不仅具有很好的解释性,常常也具有很高的性能。本书的主要工作就是针对高维数据的稀疏统计建模研究。
朋友们,85×85=?你能瞬间算出这道数学题的答案吗?学习了本书所教授的印度吠陀数学的计算方法,2秒钟就可以给出答案。也许你会惊讶,“这是数学还是魔术?”但是,真的就有这么神奇! 印度吠陀数学的创始人巴拉蒂?克里希纳?第勒塔季在1911~1918年期间潜心研究印度古代吠陀经文,在此基础上重构了数学计算体系,并将其传播到世界各地。吠陀数学比一般的计算方法快10~15倍,其结构连贯、完美、准确且容易计算。理解了吠陀数学法则,便可以创造出自己的解题方法,也可将其运用于现代数学——代数、几何、三角函数、微积分等科目中。本书是以两位数的运算为例来阐述的,可谓是吠陀数学的入门篇。每天花十分钟做练习题,并把这些简单又神奇的法则熟记于心,这会成为以后进行熟练运算的基础。也会使你成为酷的数学达人!
梁美灵、王则柯编著的《混沌与均衡纵横谈(珍藏版)》围绕混沌理论和经济均衡理论计算方法,着重介绍了李天岩、约、梅、斯卡夫、菲根鲍姆、斯梅尔等学者近年来所做的贡献。这些学者全都是极富个性的人物,他们的共同特点是基础深厚,兴趣广泛,对新发展富有远见。他们不是死守一块阵地,而是为开拓不惜改弦更张,一旦认准了目标,他们锲而不舍,务全功,决不半途而废。这一切,都是科研工作者可贵的品格,都是进步科学、新时代探索者的可贵品格。
雷蒙德·怀尔德将数学视为一种广泛的文化现象,而不是对数学史或哲学进行调查。他研究并说明了诸如数字和长度等概念是如何受到历史和社会事件的影响的。本研究从初步的概念出发,探讨了数字的早期演变、几何的演变以及对无限的征服,并以真实数字为代表。通过对现代数学的进化方面的考察,对进化过程进行了详细的研究。